Human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) are being studied for cell replacement therapies, including the treatment of acute spinal cord injury. Current methods of differentiating OPCs from hESCs require complex, animal-derived biological extracellular matrices (ECMs). Defined, low-cost, robust, and scalable culture methods will need to be developed for the widespread deployment and commercialization of hESC-derived cell therapies.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) have two properties of interest for the development of cell therapies: self-renewal and the potential to differentiate into all major lineages of somatic cells in the human body. Widespread clinical application of hESC-derived cells will require culture methods that are low-cost, robust, scalable and use chemically defined raw materials. Here we describe synthetic peptide-acrylate surfaces (PAS) that support self-renewal of hESCs in chemically defined, xeno-free medium.
View Article and Find Full Text PDFTo identify genes that may be involved in the process of human embryonic stem cell (hESC) differentiation, we profiled gene expression by expressed sequenced tag (EST) enumeration and massively parallel signature sequencing (MPSS) using RNA samples from feeder-free cultures of undifferentiated (passages 40-50) and differentiated (day 14) H1, H7, and H9 lines. MPSS and EST scan analysis showed good concordance and identified a large number of genes that changed rapidly as cultures transition from a pluripotent to a differentiated state. These included known and unknown ES cell-specific genes as well as a large number of known genes that were altered as cells differentiate.
View Article and Find Full Text PDFBackground: Pooled human embryonic stem cells (hESC) cell lines were profiled to obtain a comprehensive list of genes common to undifferentiated human embryonic stem cells.
Results: Pooled hESC lines were profiled to obtain a comprehensive list of genes common to human ES cells. Massively parallel signature sequencing (MPSS) of approximately three million signature tags (signatures) identified close to eleven thousand unique transcripts, of which approximately 25% were uncharacterised or novel genes.
Human embryonic stem (hES) cells hold promise for generating an unlimited supply of cells for replacement therapies. To characterize hES cells at the molecular level, we obtained 148,453 expressed sequence tags (ESTs) from undifferentiated hES cells and three differentiated derivative subpopulations. Over 32,000 different transcripts expressed in hES cells were identified, of which more than 16,000 do not match closely any gene in the UniGene public database.
View Article and Find Full Text PDFWe compared gene expression profiles of mouse and human ES cells by immunocytochemistry, RT-PCR, and membrane-based focused cDNA array analysis. Several markers that in concert could distinguish undifferentiated ES cells from their differentiated progeny were identified. These included known markers such as SSEA antigens, OCT3/4, SOX-2, REX-1 and TERT, as well as additional markers such as UTF-1, TRF1, TRF2, connexin43, and connexin45, FGFR-4, ABCG-2, and Glut-1.
View Article and Find Full Text PDFHuman embryonic stem (huES) cells have the ability to differentiate into a variety of cell lineages and potentially provide a source of differentiated cells for many therapeutic uses. However, little is known about the mechanism of differentiation of huES cells and factors regulating cell development. We have used high-quality microarrays containing 16 659 seventy-base pair oligonucleotides to examine gene expression in 6 of the 11 available huES cell lines.
View Article and Find Full Text PDFSeveral laboratories have begun evaluating human ES (hES) cell lines; however, direct comparisons between different hES cell lines have not been performed. We have characterized the properties of four human cell lines maintained in feeder-free culture conditions. Quantitative assessment of surface markers, microarray analysis of gene expression patterns, expression of SOX-2, UTF-1, Rex-1, OCT3/4, CRIPTO, and telomerase activity demonstrated similar patterns in all hES cell lines examined.
View Article and Find Full Text PDF