Publications by authors named "Ralph Bolanz"

The phase purity of a series of ZnAl(OH)SO· nHO layered double hydroxides (ZnAl-LDH) obtained from a reaction of bayerite (Al(OH)) with an excess of zinc(II) sulfate under hydrothermal conditions was investigated as a function of the reaction temperature, the duration of the hydrothermal treatment, and the zinc(II) concentration. The product quality, i.e.

View Article and Find Full Text PDF

Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.

View Article and Find Full Text PDF

This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3-10), ionic strengths (0.001-0.

View Article and Find Full Text PDF

Iron sulfates represent an essential sink for the toxic element arsenic in arid and semi-arid mining areas with high evaporation rates. Information about the structural incorporation of As(5+) in iron sulfates, however, remains scarce. Here we present evidence for the heterogeneous substitution of S(6+) by As(5+) in the crystal structure of rhomboclase ((H5O2)Fe(3+)(SO4)2 · 2H2O) and its dehydration product (H3O)Fe(SO4)2.

View Article and Find Full Text PDF

Hematite (α-Fe2O3) is one of the most common iron oxides and a sink for the toxic metalloid arsenic. Arsenic can be immobilized by adsorption to the hematite surface; however, the incorporation of As in hematite was never seriously considered. In our study we present evidence that, besides adsorption, the incorporation of As into the hematite crystals can be of great relevance for As immobilization.

View Article and Find Full Text PDF