Publications by authors named "Ralph Ballerstadt"

We investigated the feasibility of constructing an implantable optical-based sensor for seminoninvasive continuous monitoring of analytes. In this novel sensor, analyte concentration-dependent changes induced in the degree of optical turbidity of the sensing element can be accurately monitored by optical coherence tomography (OCT), an interferometric technique. To demonstrate proof-of-concept, we engineered a sensor for monitoring glucose concentration that enabled us to quantitatively monitor the glucose-specific changes induced in bulk scattering (turbidity) of the sensor.

View Article and Find Full Text PDF

Background: To evaluate the feasibility of an implantable fiber-coupled fluorescence affinity sensor (FAS) for glucose monitoring in humans, we studied the acute and chronic in vivo performance in hairless rats and pigs.

Methods: The implantable fiber-coupled FAS was constructed by filling a dialysis chamber made of a regenerated cellulose membrane mounted to the distal tip of an optical fiber with fluorescent chemistry based on concanavalin A. Blood sugar changes in animals were induced by injections of insulin and dextrose.

View Article and Find Full Text PDF

The in vivo performance of a transdermal near-infrared fluorescence resonance energy transfer (FRET) affinity sensor was investigated in hairless rats, in order to validate its feasibility for glucose monitoring in humans. The sensor itself consists of a small hollow fiber implanted in dermal skin tissue, containing glucose-sensitive assay chemistry composed of agarose-immobilized Concanavalin A (ConA) and free dextran. The glucose-dependent fluorescence change is based on FRET between near-infrared-compatible donor and quencher dyes that are chemically linked to dextran and ConA, respectively.

View Article and Find Full Text PDF

Over the last two decades there as has been surging scientific interest in employing the glucose- and mannose-specific lectin Concanavalin A (ConA) in affinity biosensors for in vivo glucose monitoring in diabetics. Numerous research groups have successfully shown in in vitro and in vivo studies that ConA-based affinity sensors can monitor glucose very accurately and reproducibly over many months, making ConA-based sensors an extremely interesting prospect for long-term implantation in humans. Despite this progress, there remains concern over the safety of ConA, which has widely been reported as a toxin in the literature.

View Article and Find Full Text PDF

The long-term in vitro performance of a fluorescence affinity sensor for transdermal blood glucose monitoring was investigated. Affinity binding of fluorescently labeled concanavalin A (ConA) was used in this application, as previously described by Ballerstadt and Schultz [Anal. Chem.

View Article and Find Full Text PDF

A novel near-infrared (NIR) fluorescence affinity sensor for continuous glucose monitoring was developed and characterized. The sensor operates by fluorescence resonance energy transfer between a NIR chromophore linked to concanavalin A (ConA) and an NIR fluorophore linked to free dextran. The binding of dextran with ConA in the absence of glucose results in low fluorescence due to quenching; however, the quenching is reversed by competitive displacement of dextran from ConA by glucose.

View Article and Find Full Text PDF