Publications by authors named "Ralf Tillmann"

Oxidized Organic Aerosol (OOA), a major component of fine atmospheric particles, impacts climate and human health. Previous experiments and atmospheric models emphasize the importance of nocturnal OOA formation from NO· oxidation of biogenic VOCs. This seasonal study extends the understanding by showing that nocturnal oxidation of biomass-burning emissions can account for up to half of total OOA production in fall and winter.

View Article and Find Full Text PDF

The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO-initiated oxidation of a representative monoterpene, β-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior.

View Article and Find Full Text PDF

Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NOIsop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 ± 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with ∼50 μg m inorganic seed aerosol and 2-5 μg m total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically ∼100 ppb O and 5-25 ppb NO) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes.

View Article and Find Full Text PDF

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids.

View Article and Find Full Text PDF

Rationale: Secondary organic aerosols (SOAs) represent a significant portion of total atmospheric aerosols. They are generated by the oxidation of volatile organic compounds (VOCs), and particularly biogenic VOCs (BVOCs). The analysis of such samples is usually performed by targeted methods that often require time-consuming preparation steps that can induce loss of compounds and/or sample contaminations.

View Article and Find Full Text PDF

Ye et al. have determined a maximum nitrous acid (HONO) yield of 3% for the reaction HO2·H2O + NO2, which is much lower than the yield used in our work. This finding, however, does not affect our main result that HONO in the investigated Po Valley region is mainly from a gas-phase source that consumes nitrogen oxides.

View Article and Find Full Text PDF

Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions.

View Article and Find Full Text PDF

Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear.

View Article and Find Full Text PDF

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol.

View Article and Find Full Text PDF

The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) is known to form from a variety of anthropogenic and biogenic precursors. Current estimates of global SOA production vary over 2 orders of magnitude. Since no direct measurement technique for SOA exists, quantifying SOA remains a challenge for atmospheric studies.

View Article and Find Full Text PDF

It has been suggested that volatile organic compounds (VOCs) are involved in organic aerosol formation, which in turn affects radiative forcing and climate. The most abundant VOCs emitted by terrestrial vegetation are isoprene and its derivatives, such as monoterpenes and sesquiterpenes. New particle formation in boreal regions is related to monoterpene emissions and causes an estimated negative radiative forcing of about -0.

View Article and Find Full Text PDF

The absolute rate coefficient for the reaction of alpha-pinene with ozone was determined in the temperature range between 243 K and 303 K at atmospheric pressure. In total, 30 experiments were performed in the large (85 m3) temperature-controlled simulation chamber AIDA, where the concentrations of the reactants ozone and alpha-pinene were measured directly. An Arrhenius expression for the alpha-pinene + ozone reaction was derived with a pre-exponential factor of (1.

View Article and Find Full Text PDF

The presence of organic coatings on aerosols may have important consequences to the atmospheric chemistry, in particular to the N2O5 heterogeneous hydrolysis. This is demonstrated by recent experiments which show that the uptake of N2O5 by aqueous aerosols is slowed considerably when an organic coating consisting of monoterpene oxidation products is added on the particles. To treat the mechanisms behind the suppression, an extension of the resistor model, which has been widely applied in investigation of the heterogeneous uptake by aerosols, was derived.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvchala77gbk1q5o72gjlugsef349ro9e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once