Publications by authors named "Ralf Tautenhahn"

Modern separation methods in conjunction with high-resolution accurate mass (HRAM) spectrometry can provide an enormous number of features characterized by exact mass and chromatographic behavior. Higher mass resolving power usually requires longer scanning times, and thus fewer data points are acquired across the target peak. This could cause difficulties for quantification, feature detection and deconvolution.

View Article and Find Full Text PDF

Motivation: Metabolite databases provide a unique window into metabolome research allowing the most commonly searched biomarkers to be catalogued. Omic scale metabolite profiling, or metabolomics, is finding increased utility in biomarker discovery largely driven by improvements in analytical technologies and the concurrent developments in bioinformatics. However, the successful translation of biomarkers into clinical or biologically relevant indicators is limited.

View Article and Find Full Text PDF

The human circulatory system consists of arterial blood that delivers nutrients to tissues, and venous blood that removes the metabolic by-products. Although it is well established that arterial blood generally has higher concentrations of glucose and oxygen relative to venous blood, a comprehensive biochemical characterization of arteriovenous differences has not yet been reported. Here we apply cutting-edge, mass spectrometry-based metabolomic technologies to provide a global characterization of metabolites that vary in concentration between the arterial and venous blood of human patients.

View Article and Find Full Text PDF

The manipulation of distinct signaling pathways and transcription factors has been shown to influence life span in a cell-non-autonomous manner in multicellular model organisms such as . These data suggest that coordination of whole-organism aging involves endocrine signaling, however, the molecular identities of such signals have not yet been determined and their potential relevance in humans is unknown. Here we describe a novel metabolomic approach to identify molecules directly associated with extended life span in that represent candidate compounds for age-related endocrine signals.

View Article and Find Full Text PDF

An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications.

View Article and Find Full Text PDF

Motivation: Isotope trace (IT) detection is a fundamental step for liquid or gas chromatography mass spectrometry (XC-MS) data analysis that faces a multitude of technical challenges on complex samples. The Kalman filter (KF) application to IT detection addresses some of these challenges; it discriminates closely eluting ITs in the m/z dimension, flexibly handles heteroscedastic m/z variances and does not bin the m/z axis. Yet, the behavior of this KF application has not been fully characterized, as no cost-free open-source implementation exists and incomplete evaluation standards for IT detection persist.

View Article and Find Full Text PDF

Mass spectrometry-based metabolomics relies on MS(2) data for structural characterization of metabolites. To obtain the high-quality MS(2) data necessary to support metabolite identifications, ions of interest must be purely isolated for fragmentation. Here, we show that metabolomic MS(2) data are frequently characterized by contaminating ions that prevent structural identification.

View Article and Find Full Text PDF

Although the objective of any 'omic science is broad measurement of its constituents, such coverage has been challenging in metabolomics because the metabolome is comprised of a chemically diverse set of small molecules with variable physical properties. While extensive studies have been performed to identify metabolite isolation and separation methods, these strategies introduce bias toward lipophilic or water-soluble metabolites depending on whether reversed-phase (RP) or hydrophilic interaction liquid chromatography (HILIC) is used, respectively. Here we extend our consideration of metabolome isolation and separation procedures to integrate RPLC/MS and HILIC/MS profiling.

View Article and Find Full Text PDF

Global metabolomics describes the comprehensive analysis of small molecules in a biological system without bias. With mass spectrometry-based methods, global metabolomic data sets typically comprise thousands of peaks, each of which is associated with a mass-to-charge ratio, retention time, fold change, p-value, and relative intensity. Although several visualization schemes have been used for metabolomic data, most commonly used representations exclude important data dimensions and therefore limit interpretation of global data sets.

View Article and Find Full Text PDF

Recently, interest in untargeted metabolomics has become prevalent in the general scientific community among an increasing number of investigators. The majority of these investigators, however, do not have the bioinformatic expertise that has been required to process metabolomic data by using command-line driven software programs. Here we introduce a novel platform to process untargeted metabolomic data that uses an intuitive graphical interface and does not require installation or technical expertise.

View Article and Find Full Text PDF

metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry-based untargeted metabolomic data. It is designed to identify the differences between metabolic profiles across multiple sample groups (e.g.

View Article and Find Full Text PDF

Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its chemical basis. We show by using untargeted metabolomics that sphingomyelin-ceramide metabolism is altered in the dorsal horn of rats with neuropathic pain and that the upregulated, endogenous metabolite N,N-dimethylsphingosine induces mechanical hypersensitivity in vivo. These results demonstrate the utility of metabolomics to implicate unexplored biochemical pathways in disease.

View Article and Find Full Text PDF

Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive manual analysis and thus form a major bottleneck in data interpretation. Here we present CAMERA, a Bioconductor package integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data.

View Article and Find Full Text PDF

Metabolism is vital to every aspect of cell function, yet the metabolome of induced pluripotent stem cells (iPSCs) remains largely unexplored. Here we report, using an untargeted metabolomics approach, that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells, and that is characterized by changes in metabolites involved in cellular respiration. Examination of cellular bioenergetics corroborated with our metabolomic analysis, and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.

View Article and Find Full Text PDF

Mass spectrometry-based metabolomics is the comprehensive study of naturally occurring small molecules collectively known as the metabolome. Given the vast structural diversity and chemical properties of endogenous metabolites, biological extraction and chromatography methods bias the number, property, and concentration of metabolites detected by mass spectrometry and creates a challenge for global untargeted studies. In this work, we used Escherichia coli bacterial cells to explore the influence of solvent polarity, temperature, and pH in extracting polar and nonpolar metabolites simultaneously.

View Article and Find Full Text PDF

Mass spectrometry-based untargeted metabolomics often results in the observation of hundreds to thousands of features that are differentially regulated between sample classes. A major challenge in interpreting the data is distinguishing metabolites that are causally associated with the phenotype of interest from those that are unrelated but altered in downstream pathways as an effect. To facilitate this distinction, here we describe new software called metaXCMS for performing second-order ("meta") analysis of untargeted metabolomics data from multiple sample groups representing different models of the same phenotype.

View Article and Find Full Text PDF

Background: Liquid chromatography coupled to mass spectrometry (LC/MS) is an important analytical technology for e.g. metabolomics experiments.

View Article and Find Full Text PDF

Background: Liquid chromatography coupled to mass spectrometry (LC-MS) has become a prominent tool for the analysis of complex proteomics and metabolomics samples. In many applications multiple LC-MS measurements need to be compared, e. g.

View Article and Find Full Text PDF