This paper describes the application of a modeling approach for precise optical performance prediction of free-form optics-based subsystems on a demonstration model of an eye implant. The simulation model is enhanced by surface data measured on the free-form lens parts. The manufacturing of the free-form lens parts is realized by two different manufacturing processes: ultraprecision diamond machining and microinjection molding.
View Article and Find Full Text PDFMicroinjection molding is a mass production method to fabricate affordable optical components. However, the intense nature of this process often results in part deformation and uneven refractive index distribution. These two factors limit the precision of replicated optics.
View Article and Find Full Text PDFPhase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges.
View Article and Find Full Text PDFThe requirements for a broadband antireflective structure in the THz spectral region are derived. Optimized structural parameters for a surface-relief grating adapted to the spectrum of an intended THz pulse are deduced. The effect of a structure fabricated into Topas((R)) by a single-point diamond-turning process is demonstrated.
View Article and Find Full Text PDF