Publications by authors named "Ralf Spindler"

The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications.

View Article and Find Full Text PDF

Background: The continued growth in the uses of umbilical cord blood (UCB) will require the development of meaningful postthaw quality assays. This study examines both conventional and new measures for assessing UCB quality after long-term storage.

Study Design And Methods: The first arm of the study involved thawing UCB in storage for short (approx.

View Article and Find Full Text PDF

Millions of biological samples are currently kept at low tempertures in cryobanks/biorepositories for long-term storage. The quality of the biospecimen when thawed, however, is not only determined by processing of the biospecimen but the storage conditions as well. The overall objective of this article is to describe the scientific basis for selecting a storage temperature for a biospecimen based on current scientific understanding.

View Article and Find Full Text PDF

Cellular response during the freeze-thaw process strongly affects the cryopreservation outcome including cell morphology and cell viability. Cryomicroscopy was used to individually analyze the osmotic response of human pulmonary microvascular endothelial cells (HPMECs) during slow cooling (1 °C/min) to -60 °C and fast rewarming to 4 °C (100 °C/min). The ice nucleation temperature was controlled (T(n)=-8 °C).

View Article and Find Full Text PDF

Stem cell research is a highly promising and rapidly progressing field inside regenerative medicine. Embryonic stem cells (ESCs), reprogrammed "induced pluripotent" cells (iPS), or lately protein induced pluripotent cells (piPS) share one inevitable factor: mouse embryonic feeder cells (MEFs), which are commonly used for ESC long term culture procedures and colony regeneration. These MEFs originate from different mouse strains, are inactivated by different methods and are differently cryopreserved.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) have great potential for clinical therapy and regenerative medicine. One major challenge concerning their application is the development of an efficient cryopreservation protocol since current methods result in a poor viability and high differentiation rates. A high survival rate of cryopreserved cells requires an optimal cooling rate and the presence of cryoprotective agents (CPA) in sufficient concentrations.

View Article and Find Full Text PDF

Cryopreservation is a convenient method for long-term preservation of natural and engineered tissues in regenerative medicine. Homogeneous loading of tissues with CPAs, however, forms one of the major hurdles in tissue cryopreservation. In this study, computer tomography (CT) as a non-invasive imaging method was used to determine the effective diffusion of Me2SO in tissue-engineered collagen scaffolds.

View Article and Find Full Text PDF

Fourier transform infrared spectroscopy (FTIR) provides a unique technique to study membranes and proteins within their native cellular environment. FTIR was used here to study the effects of dimethyl sulfoxide (Me(2)SO) on membranes and proteins in human pulmonary endothelial cells (HPMECs). Temperature-dependent changes in characteristic lipid and protein vibrational bands were identified to reveal the effects of Me(2)SO on membrane phase behavior and protein stability.

View Article and Find Full Text PDF