Publications by authors named "Ralf Schnabel"

Article Synopsis
  • The CMG helicase complex is essential for controlling gene expression during asymmetric cell divisions in C. elegans.
  • The specific component PSF-2 GINS2 is necessary for activating the pro-apoptotic gene egl-1, which is crucial for programmed cell death.
  • The study highlights CMG's role in influencing cell fates and suggests it affects gene expression beyond just egl-1 regulation.
View Article and Find Full Text PDF

Asymmetric cell divisions often generate daughter cells of unequal size in addition to different fates. In some contexts, daughter cell size asymmetry is thought to be a key input to specific binary cell fate decisions. An alternative possibility is that unequal division is a mechanism by which a variety of cells of different sizes are generated during embryonic development.

View Article and Find Full Text PDF

Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed.

View Article and Find Full Text PDF

Are there common mechanisms of neurogenesis used throughout an entire nervous system? We explored to what extent canonical proneural class I/II bHLH complexes are responsible for neurogenesis throughout the entire Caenorhabditis elegans nervous system. Distinct, lineage-specific proneural class II bHLH factors are generally thought to operate via interaction with a common, class I bHLH subunit, encoded by Daughterless in flies, the E proteins in vertebrates and HLH-2 in C. elegans.

View Article and Find Full Text PDF

It has been estimated that 15%-30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants.

View Article and Find Full Text PDF

Cells of the same type can be generated by distinct cellular lineages that originate in different parts of the developing embryo ('lineage convergence'). Several Caenorhabditis elegans neuron classes composed of left/right or radially symmetric class members display such lineage convergence. We show here that the C.

View Article and Find Full Text PDF

Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected.

View Article and Find Full Text PDF

Asymmetric cell division is a major mechanism generating cell diversity. As cell cycle duration varies among cells in mammalian tissue culture cells, we asked whether their division asymmetry contributes to this variability. We identify among sibling cells an outlier using hierarchical clustering on cell cycle durations of granddaughter cells obtained by lineage tracking of single histone2B-labelled MDCKs.

View Article and Find Full Text PDF

Centrosomes, the major microtubule-organizing centers of animal cells, are essential for the assembly of a bipolar spindle during mitosis. Spindle defective-5 (SPD-5), the main scaffold protein of the centrosome matrix in Caenorhabditis elegans, forms a thin core around non-mitotic centrioles. Upon mitotic entry, the SPD-5-containing centrosome matrix expands in a Polo-like-kinase 1 (PLK-1)-dependent manner and this enables an enhanced microtubule nucleation activity during mitosis.

View Article and Find Full Text PDF

Gene expression is generally regulated by recruitment of transcription factors and RNA polymerase II (RNAP II) to specific sequences in the gene promoter region. The Integrator complex mediates processing of small nuclear RNAs (snRNAs) as well as the initiation and release of paused RNAP II at specific genes in response to growth factors. Here we show that in C.

View Article and Find Full Text PDF

Various neurotransmitters influence neuronal migration in the developing zebrafish hindbrain. Migrating tegmental hindbrain nuclei neurons (THNs) are governed by depolarizing neurotransmitters (acetylcholine and glutamate), and glycine. In mature neurons, glycine binds to its receptor to hyperpolarize cells.

View Article and Find Full Text PDF

Neuronal migration during embryonic development contributes to functional brain circuitry. Many neurons migrate in morphologically distinct stages that coincide with differentiation, requiring tight spatial regulation. It had been proposed that neurotransmitter-mediated activity could exert this control.

View Article and Find Full Text PDF

Mutants remain a powerful means for dissecting gene function in model organisms such as Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method.

View Article and Find Full Text PDF

Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID.

View Article and Find Full Text PDF

In multicellular organisms cells spatially arrange in a highly coordinated manner to form tissues and organs, which is essential for the function of an organism. The component cells and resulting structures are often polarised in one or more axes, and how such polarity is established and maintained correctly has been one of the major biological questions for many decades. Research progress has shown that many adhesion GPCRs (aGPCRs) are involved in several types of polarity.

View Article and Find Full Text PDF

Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)-treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L-like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease-causing gene SMPD1.

View Article and Find Full Text PDF

Orientation of spindles and cell division planes during development of many species ensures that correct cell-cell contacts are established, which is vital for proper tissue formation. This is a tightly regulated process involving a complex interplay of various signals. The molecular mechanisms underlying several of these pathways are still incompletely understood.

View Article and Find Full Text PDF

Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets.

View Article and Find Full Text PDF

Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans.

View Article and Find Full Text PDF

Traditional neuropsychological assessments are conducted exclusively in a quiet, distraction-free environment; clients' abilities to operate under busy and distracting conditions remain untested. Environmental distractions, however, are typical for a multitude of real-life situations and present a challenge to clients with frontal-temporal brain injury. In an effort to improve ecological validity, an extension of the traditional neuropsychological assessment was developed, comprising a standardized distraction condition.

View Article and Find Full Text PDF

The free-living nematode Caenorhabditis elegans is a well-characterized eukaryotic model organism. Recent glycomic analyses of the glycosylation potential of this worm revealed an extremely high structural variability of its N-glycans. Moreover, the glycan patterns of each developmental stage appeared to be unique.

View Article and Find Full Text PDF

Practice effects present a challenge for neuropsychological re-assessments. Insufficiently controlled test-learning effects could result in "improved" test scores on re-assessment, which could wrongly be interpreted as recovery when in fact the underlying cognitive function has remained unchanged or deteriorated. Logical memory is highly sensitive to practice effects.

View Article and Find Full Text PDF

The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid.

View Article and Find Full Text PDF