Publications by authors named "Ralf Ostendorp"

X-ray structure analysis of 4 antibody Fab fragments, each in complex with human granulocyte macrophage colony stimulating factor (GM-CSF), was performed to investigate the changes at the protein-protein binding interface during the course of in vitro affinity maturation by phage display selection. The parental antibody MOR03929 was compared to its derivatives MOR04252 (CDR-H2 optimized), MOR04302 (CDR-L3 optimized) and MOR04357 (CDR-H2 and CDR-L3 optimized). All antibodies bind to a conformational epitope that can be divided into 3 sub-epitopes.

View Article and Find Full Text PDF

The generation of therapeutic antibodies with extremely high affinities down to the low picomolar range is today feasible with state-of-the art recombinant technologies. However, reliable and efficient identification of lead candidates with the desired affinity from a pool of thousands of antibody clones remains a challenge. Here, we describe a high-throughput procedure that allows reliable affinity screening of unpurified immunoglobulin G or antibody fragments.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains.

View Article and Find Full Text PDF

Antibody-based therapeutics are of great value for the treatment of human diseases. In addition to functional activity, affinity or physico-chemical properties, antibody specificity is considered to be one of the most crucial attributes for safety and efficacy. Consequently, appropriate studies are required before entering clinical trials.

View Article and Find Full Text PDF

Protein microarray technology facilitates the detection and quantification of hundreds of binding reactions in one reaction from a minute amount of sample. Proof-of-concept studies have shown that the set-up of sensitive assay systems based on protein arrays is possible, however, the lack of specific capture reagents limits their use. Therefore, the generation and characterisation of capture molecules is one of the key topics for the development of protein array based systems.

View Article and Find Full Text PDF

We have developed a method for the high-level expression of expressed sequence tags (ESTs) as inclusion bodies in Escherichia coli by C-terminal fusion to the N1-domain of g3p of filamentous phage M13. Soluble fusion protein is obtained by an efficient refolding procedure. We have applied such protein preparations to the selection of human antibody fragments from phage-displayed HuCAL libraries.

View Article and Find Full Text PDF