Methods that accelerate the evaluation of molecular properties are essential for chemical discovery. While some degree of ligand additivity has been established for transition metal complexes, it is underutilized in asymmetric complexes, such as the square pyramidal coordination geometries highly relevant to catalysis. To develop predictive methods beyond simple additivity, we apply a many-body expansion to octahedral and square pyramidal complexes and introduce a correction based on adjacent ligands (i.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
November 2024
Over the last years, inverse gas chromatography (IGC) proved to be a versatile and sensitive analytical technique for physicochemical properties. However, the comparability of results obtained by different users and devices remains a topic for debate. This is the first time, an interlaboratory study using different types of IGC instruments is reported.
View Article and Find Full Text PDFStud Health Technol Inform
September 2023
Representing knowledge in a comprehensible and maintainable way and transparently providing inferences thereof are important issues, especially in the context of applications related to artificial intelligence in medicine. This becomes even more obvious if the knowledge is dynamically growing and changing and when machine learning techniques are being involved. In this paper, we present an approach for representing knowledge about cancer therapies collected over two decades at St.
View Article and Find Full Text PDFDespite marked progress in the management of atrial fibrillation (AF), detecting AF remains difficult and AF-related complications cause unacceptable morbidity and mortality even on optimal current therapy. This document summarizes the key outcomes of the 8th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). Eighty-three international experts met in Hamburg for 2 days in October 2021.
View Article and Find Full Text PDFThe localization of transition states and the calculation of reaction pathways are routine tasks of computational chemists but often very CPU-intense problems, in particular for large systems. The standard algorithm for this purpose is the nudged elastic band method, but it has become obvious that an "intelligent" selection of points to be evaluated on the potential energy surface can improve its convergence significantly. This article summarizes, compares, and extends known strategies that have been heavily inspired by the machine learning developments of recent years.
View Article and Find Full Text PDFSurface modification of porous glass beads by ethanol-based 3-mercaptopropyltrimethoxysilane (MPTMS) grafting solutions is directly evidenced by nitrogen adsorption, elemental analysis, thermogravimetry, infrared and Si CP MAS NMR spectroscopy. Furthermore, the energetic characterization of the surface is essential to understand comprehensively the physico-chemical interactions between the pristine and MPTMS-modified surface and its gas/liquid-phase environment. In this study, inverse gas chromatography (IGC) is used to characterize the surface properties of porous glass (PG).
View Article and Find Full Text PDFThe 0.4 K internal temperature of superfluid helium nanodroplets is believed to guarantee a corresponding ground-state population of dopant atoms and molecules inside this cryogenic matrix. We have recorded 6s ← 5p excitation spectra of indium atoms in helium droplets and found two absorption bands separated by about 2000 cm, a value close to the spin-orbit (SO) splitting of the In P ground state.
View Article and Find Full Text PDFEuropace
January 2016
Fundamental development of a biocompatible and degradable nanocarrier platform based on hydroxyethyl starch (HES) is reported. HES is a derivative of starch and possesses both high biocompatibility and improved stability against enzymatic degradation; it is used to prepare nanocapsules via the polyaddition reaction at the interface of water nanodroplets dispersed in an organic miniemulsion. The synthesized hollow nanocapsules can be loaded with hydrophilic guests in its aqueous core, tuned in size, chemically functionalized in various pathways, and show high shelf life stability.
View Article and Find Full Text PDF