We studied the chemical entities within N-octanoyl dopamine (NOD) responsible for the activation of transient-receptor-potential channels of the vanilloid-receptor subtype 1 (TRPV1) and inhibition of inflammation. The potency of NOD in activating TRPV1 was significantly higher compared with those of variants in which the ortho-dihydroxy groups were acetylated, one of the hydroxy groups was omitted ( N-octanoyl tyramine), or the ester functionality consisted of a bulky fatty acid ( N-pivaloyl dopamine). Shortening of the amide linker (ΔNOD) slightly increased its potency, which was further increased when the carbonyl and amide groups (ΔNODR) were interchanged.
View Article and Find Full Text PDFBackground And Purpose: Catechol containing compounds have anti-inflammatory properties, yet for catecholamines these properties are modest. Since we have previously demonstrated that the synthetic dopamine derivative N-octanoyl dopamine (NOD) has superior anti-inflammatory properties compared to dopamine, we tested NOD in more detail and sought to elucidate the molecular entities and underlying mechanism by which NOD down-regulates inflammation.
Experimental Approach: Genome wide gene expression profiling of human umbilical vein endothelial cells (HUVECs) was performed after stimulation with TNF-α or in the combination with NOD.
Carbon monoxide (CO) abrogates TNF-α-mediated inflammatory responses in endothelial cells, yet the underlying mechanism thereof is still elusive. We have previously shown that the anti-inflammatory effect of CO-releasing molecule-3 (CORM-3) is not completely mediated via deactivation of the NF-κB pathway. In this study, we sought to explore other potential mechanisms by which CORM-3 downregulates VCAM-1 expression on TNF-α-stimulated HUVECs.
View Article and Find Full Text PDFAllograft vasculopathy is the leading cause for chronic transplant loss. We investigated if the addition of carbon monoxide releasing molecules (CORMs) to the preservation solution would protect the endothelium from cold preservation injury in an aortic transplantation model. In particular, we tested if CORM preserve vascular functioning and limit neo-intima formation following cold preservation (Cp).
View Article and Find Full Text PDFBackground: Donor dopamine usage is associated with improved immediate graft function after renal transplantation. Although prolonged cold preservation results in an increased vascular permeability, the present study was conducted to examine in vitro and in vivo if dopamine pretreatment influences endothelial barrier function under such conditions.
Methods: To assess cold preservation injury in vitro and in vivo, cultured human umbilical vein endothelial cells (HUVEC) and Lewis donor rats were pretreated with dopamine or isotonic saline prior to cold storage.
Objective: Hpr6 (heme-1 domain protein/human progesterone receptor) is one of a family of proteins that are implicated in progesterone metabolism, resistance to genotoxic agents and steroid biosynthesis. Because these processes are frequently misregulated in tumors, we have examined the expression of Hpr6 in a group of clinical tumor samples and cancer cell lines.
Methods: Hpr6 expression was analyzed by Western blot in extracts from breast, cervix, colon and thyroid cell lines and in nonmalignant and adjacent tumor tissue from breast, colon and thyroid.