Publications by authors named "Ralf Loeffler"

The more effective use of readily available Ce in FeNdB sintered magnets is an important step towards more resource-efficient, sustainable, and cost-effective permanent magnets. These magnets have the potential to bridge the gap between high-performance FeNdB and hard ferrite magnets. However, for higher degrees of cerium substitution (>25%), the magnetic properties deteriorate due to the lower intrinsic magnetic properties of FeCeB and the formation of the Laves phase FeCe in the grain boundaries.

View Article and Find Full Text PDF

Permanent magnets based on FePrCuB were realized on a laboratory scale through additive manufacturing (laser powder bed fusion, L-PBF) and book mold casting (reference). A well-adjusted two-stage heat treatment of the as-cast/as-printed FePrCuB alloys produces hard magnetic properties without the need for subsequent powder metallurgical processing. This resulted in a coercivity of 0.

View Article and Find Full Text PDF

Background: Hepatic iron content (HIC) is an important parameter for the management of iron overload. Non-invasive HIC assessment is often performed using biopsy-calibrated two-dimensional breath-hold Cartesian gradient echo (2D BH GRE) R -MRI. However, breath-holding is not possible in most pediatric patients or those with respiratory problems, and three-dimensional free-breathing radial GRE (3D FB rGRE) has emerged as a viable alternative.

View Article and Find Full Text PDF

Background: R2*-MRI is clinically used to noninvasively assess hepatic iron content (HIC) to guide potential iron chelation therapy. However, coexisting pathologies, such as fibrosis and steatosis, affect R2* measurements and may thus confound HIC estimations.

Purpose: To evaluate whether a multispectral auto regressive moving average (ARMA) model can be used in conjunction with quantitative susceptibility mapping (QSM) to measure magnetic susceptibility as a confounder-free predictor of HIC.

View Article and Find Full Text PDF

Chronic blood transfusions in patients with sickle cell anemia (SCA) cause iron overload, which occurs with a degree of interpatient variability in serum ferritin and liver iron content (LIC). Reasons for this variability are unclear and may be influenced by genes that regulate iron metabolism. We evaluated the association of the copy number of the glutathione S-transferase M1 () gene and degree of iron overload among patients with SCA.

View Article and Find Full Text PDF

Background: Measuring hepatic R2* by fitting a monoexponential model to the signal decay of a multigradient-echo (mGRE) sequence noninvasively determines hepatic iron content (HIC). Concurrent hepatic steatosis introduces signal oscillations and confounds R2* quantification with standard monoexponential models.

Purpose: To evaluate an autoregressive moving average (ARMA) model for accurate quantification of HIC in the presence of fat using biopsy as the reference.

View Article and Find Full Text PDF

Background: Current R2*-MRI techniques for measuring hepatic iron content (HIC) use various acquisition types and fitting models.

Purpose: To evaluate the accuracy and precision of R2*-HIC acquisition and fitting methods.

Study Type: Signal simulations, phantom study, and prospective in vivo cohort.

View Article and Find Full Text PDF

Purpose: To develop a computationally fast and accurate algorithm for mono-exponential signal modelling and validate the new technique in the context of R2* mapping for iron overload assessment.

Methods: An algorithm is introduced that directly calculates R2* values from a series of images based on integration of the mono-exponential signal decay curve. The algorithm is fast, because fitting is avoided and only arithmetic computations without iterations are applied.

View Article and Find Full Text PDF

Background: Extraction of liver parenchyma is an important step in the evaluation of R2*-based hepatic iron content (HIC). Traditionally, this is performed by radiologists via whole-liver contouring and T2*-thresholding to exclude hepatic vessels. However, the vessel exclusion process is iterative, time-consuming, and susceptible to interreviewer variability.

View Article and Find Full Text PDF

Purpose: To evaluate a new postprocessing framework that eliminates arterial vessel signal contributions in the quantification of normalized visible venous volume (NVVV, a ratio between venous and brain volume) in susceptibility-weighted imaging (SWI) exams in patients with sickle cell disease (SCD).

Materials And Methods: We conducted a retrospective study and qualitatively reviewed for hypointense arterial vessel contamination in SWI exams from 21 children with SCD. We developed a postprocessing framework using magnetic resonance angiography in combination with SWI to provide a more accurate quantification of NVVV.

View Article and Find Full Text PDF

Purpose: To evaluate a new postprocessing framework that eliminates arterial vessel signal contributions in the quantification of normalized visible venous volume (NVVV, a ratio between venous and brain volume) in susceptibility-weighted imaging (SWI) exams in patients with sickle cell disease (SCD).

Materials And Methods: We conducted a retrospective study and qualitatively reviewed for hypointense arterial vessel contamination in SWI exams from 21 children with SCD. We developed a postprocessing framework using magnetic resonance angiography in combination with SWI to provide a more accurate quantification of NVVV.

View Article and Find Full Text PDF

Objective: The objective of this study is to evaluate radial free-breathing (FB) multiecho ultrashort TE (UTE) imaging as an alternative to Cartesian FB multiecho gradient-recalled echo (GRE) imaging for quantitative assessment of hepatic iron content (HIC) in sedated patients and subjects unable to perform breath-hold (BH) maneuvers.

Materials And Methods: FB multiecho GRE imaging and FB multiecho UTE imaging were conducted for 46 test group patients with iron overload who could not complete BH maneuvers (38 patients were sedated, and eight were not sedated) and 16 control patients who could complete BH maneuvers. Control patients also underwent standard BH multiecho GRE imaging.

View Article and Find Full Text PDF

Purpose: Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations.

Methods: Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling.

View Article and Find Full Text PDF

Background: Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward.

View Article and Find Full Text PDF

Purpose: Spin-lock (SL) imaging allows quantification of the spin-lattice relaxation time in the rotating frame (T1ρ). B0 and B1 inhomogeneities impact T1ρ quantification because the preparatory block in SL imaging is sensitive to the field heterogeneities. Here, a modified preparatory block (PSC-SL) is proposed that attempts to alleviate SL sensitivity to field inhomogeneities in scenarios where existing approaches fail, i.

View Article and Find Full Text PDF

Measuring glomerular filtration rate (GFR) by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) as part of standard of care clinicalMRIexams (e.g., in pediatric solid tumor patients) has the potential to reduce diagnostic burden.

View Article and Find Full Text PDF

Purpose: Fat suppression (FS) via chemically selective saturation (CHESS) eliminates fat-water oscillations in multiecho gradient echo (mGRE) R2*-MRI. However, for increasing R2* values as seen with increasing liver iron content (LIC), the water signal spectrally overlaps with the CHESS band, which may alter R2*. We investigated the effect of CHESS on R2* and developed a heuristic correction for the observed CHESS-induced R2* changes.

View Article and Find Full Text PDF

Purpose: To develop and evaluate an algorithm that automatically identifies high-susceptibility areas and excludes them from T(2) * measurements in the left ventricle (LV) for myocardial iron measurements.

Materials And Methods: An autoregressive moving average (ARMA) model was implemented on multigradient echo scans of 24 patients (age range 3-45 years, 10 male/14 female). Voxels with relatively high susceptibility (>3 Hz/mm) were flagged and deselected from the T(2) * calculations for iron quantification.

View Article and Find Full Text PDF

Purpose: To develop a reproducible small-animal dynamic contrast-enhanced (DCE) MRI set-up for mice through which volumes <100 μL can be accurately and safely injected and to test this set-up by means of DCE measurements in resting muscle and tumor tissue.

Materials And Methods: The contrast agent (CA) injection system comprised 2 MR-compatible syringe pumps placed 50 cm from the 7T magnet bore where the fringe field is approximately 40 mT. Microbore tubing and T-connector, close to the injection site, minimized dead volume (<10 μL).

View Article and Find Full Text PDF

Purpose: To investigate the use of a complex multigradient echo (mGRE) acquisition and an autoregressive moving average (ARMA) model for simultaneous susceptibility and R 2 measurements for the assessment of liver iron content (LIC) in patients with iron overload.

Materials And Methods: Fifty magnetic resonance imaging (MRI) exams with magnitude and phase mGRE images were processed using the ARMA model, which provides fat-separated field maps, R 2 maps, and T(1) -W imaging. The LIC was calculated by measuring the susceptibility between the liver and the right transverse abdominal muscle from the field maps.

View Article and Find Full Text PDF

A series of periodic saturation pulses used to minimize the error caused by varying transit delays in assessing perfusion using quantitative imaging of perfusion using a single subtraction II with thin-slice TI(1) periodic saturation (Q2TIPS) increases the specific absorption rate. Quantitative imaging of perfusion using a single subtraction II with window-sliding saturation sequence (Q2WISE) has been developed, in which numerous thin saturation pulses are replaced by two thin pulses and one thick saturation pulse arranged in a window-sliding manner within the labeling region to maintain a sharp slice profile while reducing specific absorption rate. Q2WISE essentially is a hybrid between Q2TIPS and quantitative imaging of perfusion using a single subtraction II for use in specific absorption rate intensive applications.

View Article and Find Full Text PDF

Purpose: To determine the tracking factor by studying the relationship between kidney and diaphragm motions and to compare the efficiency of the gating-and-following and gating-only algorithms in reducing motion artifacts in navigator-gated scans.

Materials And Methods: Diaphragm and kidney motions were measured by using real-time TrueFISP sequences from 10 healthy human volunteers to determine tracking factors at different acceptance windows. Mean tracking factors were used to calculate mean residual errors and improvement factors for the gating-and-following and gating-only algorithms.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the signal-to-noise ratio (SNR) and SNR efficiency in mixed-bandwidth acquisition (MBA), which is crucial for optimizing workflow in clinical applications.
  • Simulations were conducted and validated with phantom experiments and human volunteers to compare SNR and SNR efficiencies between MBA fast low-angle shot (MBA-FLASH) sequences and traditional single-bandwidth acquisitions.
  • Results showed that MBA sequences have an SNR penalty compared to single-bandwidth acquisitions, and the uneven noise distribution in k-space can alter the image's noise texture, but the MBA-FLASH technique is still feasible for future imaging methods.
View Article and Find Full Text PDF