The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug.
View Article and Find Full Text PDFThe electrocardiogram (ECG) is the standard method in clinical practice to non-invasively analyze the electrical activity of the heart, from electrodes placed on the body's surface. The ECG can provide a cardiologist with relevant information to assess the condition of the heart and the possible presence of cardiac pathology. Nonetheless, the global view of the heart's electrical activity given by the ECG cannot provide fully detailed and localized information about abnormal electrical propagation patterns and corresponding substrates on the surface of the heart.
View Article and Find Full Text PDFIn clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans.
View Article and Find Full Text PDFUnderstanding adipose tissue cellular heterogeneity and homeostasis is essential to comprehend the cell type dynamics in metabolic diseases. Cellular subpopulations in the adipose tissue have been related to disease development, but efforts towards characterizing the adipose tissue cell type composition are limited. Here, we identify the cell type composition of the adipose tissue by using gene expression deconvolution of large amounts of publicly available transcriptomics level data.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies.
View Article and Find Full Text PDFGiven the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes.
View Article and Find Full Text PDFThe Muscle Insulin Sensitivity Index (MISI) has been developed to estimate muscle-specific insulin sensitivity based on oral glucose tolerance test (OGTT) data. To date, the score has been implemented with considerable variation in literature and initial positive evaluations were not reproduced in subsequent studies. In this study, we investigate the computation of MISI on oral OGTT data with differing sampling schedules and aim to standardise and improve its calculation.
View Article and Find Full Text PDFJACC Clin Electrophysiol
March 2017
Objectives: The purpose of this study was to evaluate the accuracy of noninvasive reconstructions of epicardial potentials, electrograms, activation and recovery isochrones, and beat origins by simultaneously performing electrocardiographic imaging (ECGI) and invasive epicardial electrography in intact animals.
Background: Noninvasive imaging of electrical potentials at the epicardium, known as ECGI, is increasingly applied in patients to assess normal and abnormal cardiac electrical activity.
Methods: Body-surface potentials and epicardial potentials were recorded in normal anesthetized dogs.
The inverse problem of electrocardiography aims at noninvasively reconstructing electrical activity of the heart from recorded body-surface electrocardiograms. A crucial step is regularization, which deals with ill-posedness of the problem by imposing constraints on the possible solutions. We developed a regularization method that includes electrophysiological input.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2015
Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice.
View Article and Find Full Text PDFBeat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
The inverse problem of electrocardiography is to noninvasively reconstruct electrical heart activity from body-surface electrocardiograms. Solving this problem is beneficial to clinical practice. However, reconstructions cannot be obtained straightforwardly due to the ill-posed nature of this problem.
View Article and Find Full Text PDF