Background: The increasing presence of plastics in the human diet is raising public concern about the potential risks posed by nanoplastic (NP) particles, which can emerge from the degradation of plastic debris. NP ingestion poses particular risks to individuals with inflammatory bowel disease (IBD), as compromised epithelial barriers may facilitate NP translocation.
Methods: In vitro, bone-marrow-derived macrophages (BMDMs) were exposed to 25 nm polymethacrylate (PMMA) or 50 nm polystyrene (PS) particles to assess morphological changes and alterations in pro- and anti-inflammatory gene expression.
Wastewater Treatment Plants (WWTP) are a major repository and entrance path of nanoparticles (NP) in the environment and hence play a major role in the final NP fate and toxicity. Studies on silver nanoparticles (AgNP) transport via the WWTP system and uptake by aquatic organisms have so far been carried out using unrealistically high AgNP concentrations, unlikely to be encountered in the aquatic environment. The use of high AgNP concentrations is necessitated by both the low sensitivity of the detection methods used and the need to distinguish background Ag from spiked AgNP.
View Article and Find Full Text PDFThe alunite supergroup of minerals contains several hydroxysulfate mineral phases that commonly occur in acidic natural and engineered environments. The main division of the mineral supergroup defines two minerals, jarosite and alunite, based on the relative structural occupancy by Al or Fe, respectively. However, intermediate members of the jarosite-alunite solid solution have not been extensively characterized, especially in the environment.
View Article and Find Full Text PDFCo-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe and hydrophobic FeS-Fe particles, respectively.
View Article and Find Full Text PDFRiver water can be used to recharge aquifers exploited for drinking water production. Several recent studies reported microplastics (MPs) in river water, and therefore, the potential contamination of groundwater by MPs is a growing concern among stakeholders and citizens. In this research, we investigate the fate of MPs (> 20 μm) along six different stages of a major Managed Aquifer Recharge (MAR)-water supply system in Switzerland.
View Article and Find Full Text PDFAssessing ecological risks associated with the use of genetically modified RNA interference crops demands an understanding of the fate of crop-released insecticidal double-stranded RNA (dsRNA) molecules in soils. We studied the adsorption of one dsRNA and two double-stranded DNA as model nucleic acids (NAs) during transport through sand- and iron oxide-coated sand (IOCS)-filled columns over a range of solution pH and ionic compositions. Consistent with NA-sand electrostatic repulsion, we observed only slight retention of NAs in sand columns.
View Article and Find Full Text PDFChallenges in distinguishing between natural and engineered nanomaterials (ENMs) and the lack of historical records on ENM accidents have hampered attempts to estimate the accidental release and associated environmental impacts of ENMs. Building on knowledge from the nuclear power industry, we provide an assessment of the likelihood of accidental release rates of ENMs within the next 10 and 30 years. We evaluate risk predictive methodology and compare the results with empirical evidence, which enables us to propose modelling approaches to estimate accidental release risk probabilities.
View Article and Find Full Text PDFTrees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.
View Article and Find Full Text PDFMicroplastic particles (MP) are efficiently retained in wastewater treatment plants and enriched in sewage sludge. For monitoring MP contents in wastewater systems, sewage sludge is thus well suited, but also requires an isolation of MP from the sludge matrix, as other sewage sludge components may interfere with the MP identification and quantification. Although organic matter in sludge samples can be removed through acid and enzymatic digestion procedures, cellulose - mainly from toilet paper - remains in the digests, due to its high chemical resistivity and similar density to MP.
View Article and Find Full Text PDFComplex interactions between redox-driven element cycles in soils influence iron mineral transformation processes. The rates and pathways of iron mineral transformation processes have been studied intensely in model systems such as mixed suspensions, but transformation in complex heterogeneous porous media is not well understood. Here, mesh bags containing 0.
View Article and Find Full Text PDFEnviron Sci Technol
September 2022
In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation.
View Article and Find Full Text PDFMicroplastics detected in potable water sources and tap water have led to concerns about the efficacy of current drinking water treatment processes to remove these contaminants. It is hypothesized that drinking water resources contain nanoplastics (NPs), but the detection of NPs is challenging. We, therefore, used palladium (Pd)-labeled NPs to investigate the behavior and removal of NPs during conventional drinking water treatment processes including ozonation, sand and activated carbon filtration.
View Article and Find Full Text PDFPlastic pollution is a major global challenge of our times, baring a potential threat for the environment and the human health. The increasing abundance of nanoplastic (NP) and microplastic (MP) particles in the human diet might negatively affect human health since they - particularly in patients suffering from inflammatory bowel disease (IBD) - might surpass the intestinal barrier. To investigate whether ingested plastic particles cross the intestinal epithelium and promote bowel inflammation, mice were supplemented with NP or MP polystyrene (PS) particles for 24 or 12 weeks before inducing acute or chronic dextran sodium sulfate (DSS) colitis with continuous plastic administration.
View Article and Find Full Text PDFThe efficient retention of microplastic particles (MP) during wastewater treatment results in their accumulation in the sewage sludge. Thus, sewage sludge represents a key matrix for understanding MP flows between engineered and natural systems. Building on previous reports, we present a sample preparation protocol optimized for digested sewage sludge.
View Article and Find Full Text PDFInteractions between aqueous ferrous iron (Fe(II)) and secondary Fe oxyhydroxides catalyze mineral recrystallization and/or transformation processes in anoxic soils and sediments, where oxyanions, such as silicate, are abundant. However, the effect and the fate of silicate during Fe mineral recrystallization and transformation are not entirely understood and especially remain unclear for lepidocrocite. In this study, we reacted (Si-)ferrihydrite (Si/Fe = 0, 0.
View Article and Find Full Text PDFEngineered nanoparticles (NPs) that are released into wastewater are retained by wastewater treatment plants (WWTPs) and accumulate in sewage sludge. Increasing shares of sludge are incinerated and landfilled, especially in industrialized countries. It is debated whether certain types of NPs can outlive the incineration process and subsequently be released from sewage sludge ash (SSA) landfills.
View Article and Find Full Text PDFSingle particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (sp-ICP-TOFMS), in combination with online microdroplet calibration, allows the determination of particle number concentrations (PNCs) and the masses of elements in individual particles. Because sp-ICP-TOFMS analyses of environmental samples produce rich datasets composed of both single-metal nanoparticles (smNPs) and many types of multimetal NPs (mmNPs), interpretation of these data is well suited to automated analysis schemes. Here, we present a data analysis approach that includes automatic particle detection and elemental mass determinations based on online microdroplet calibration, and unsupervised clustering analysis of mmNPs to identify unique classes of NPs based on their element compositions.
View Article and Find Full Text PDFSingle particle inductively coupled plasma time-of-flight mass spectrometry (sp-ICP-TOFMS), in combination with online microdroplet calibration, allows for the determination of particle number concentrations (PNCs) and the amount ( mass) of ICP-MS-accessible elements in individual particles. Because sp-ICP-TOFMS analyses of environmental samples produce rich datasets composed of both single-metal nanoparticles (smNPs) and many types of multi-metal NPs (mmNPs), interpretation of these data is well suited to automated analysis schemes. Here, we present a new data analysis approach that includes: 1.
View Article and Find Full Text PDFThe quantification of the particle size and the number concentration (PNC) of nanoparticles (NPs) is key for the characterization of nanomaterials. Transmission electron microscopy (TEM) is often considered as the gold standard for assessing the size of NPs; however, the TEM sample preparation suitable for estimating the PNC based on deposited NPs is challenging. Here, we use an ultrasonic nebulizer (USN) to transfer NPs from aqueous suspensions into dried aerosols which are deposited on TEM grids in an electrostatic precipitator of an aerosol monitor.
View Article and Find Full Text PDFTitanium dioxide (TiO) (nano)particles are produced in large quantities and their potential impacts on ecosystems warrants investigations into their fate after disposal. TiO particles released into wastewater are retained by wastewater treatment plants and accumulate in digested sludge, which is increasingly incinerated in industrialized countries. Therefore, we investigated the changes of the Ti-speciation during incineration of as-received sludge and of sludge spiked with anatase (d=20-50 nm) or rutile (d=200-400 nm) using X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM).
View Article and Find Full Text PDFRare Earth Elements (REEs) are used in increasing amounts in technical applications and consumer products. However, to date, the contribution of industrial sources to the loads of individual REEs in wastewater streams have not been quantified. Here, we determine the REE contents in sludge collected from 63 wastewater treatment plants (WWTPs) across Switzerland.
View Article and Find Full Text PDFMercury (Hg) is a toxic trace element of global environmental concern which has been increasingly dispersed into the environment since the industrial revolution. In aquatic and terrestrial systems, Hg can be reduced to elemental Hg (Hg) and escape to the atmosphere or converted to methylmercury (MeHg), a potent neurotoxin that accumulates in food webs. Fe-bearing minerals such as magnetite, green rusts, siderite, and mackinawite are recognized Hg reducers.
View Article and Find Full Text PDF