During the Multidisciplinary Drifting Observatory for the Study of Arctic Climate expedition, a tethered balloon system was operated with a turbulence probe attached to study the lower troposphere in the high Arctic. Overall, measurements were conducted on 34 days between December 2019 and May 2020, resulting in 47 quality-assured sampling records consisting of vertical profiles and constant-altitude measurements. The continuous profiles extend from the surface, i.
View Article and Find Full Text PDFThe Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a multinational interdisciplinary endeavor of a large earth system sciences community.
View Article and Find Full Text PDFArctic warming was more pronounced than warming in midlatitudes in the last decades making this region a hotspot of climate change. Associated with this, a rapid decline of sea-ice extent and a decrease of its thickness has been observed. Sea-ice retreat allows for an increased transport of heat and momentum from the ocean up to the tropo- and stratosphere by enhanced upward propagation of planetary-scale atmospheric waves.
View Article and Find Full Text PDFThe Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter.
View Article and Find Full Text PDF