During gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface.
View Article and Find Full Text PDFThe interactions of a beam of hard and spatio-temporally coherent X-rays with a soft-matter sample primarily induce a transverse distribution of exit phase variations δϕ (retardations or advancements in pieces of the wave front exiting the object compared to the incoming wave front) whose free-space propagation over a distance z gives rise to intensity contrast gz. For single-distance image detection and |δϕ| ≪ 1 all-order-in-z phase-intensity contrast transfer is linear in δϕ. Here we show that ideal coherence implies a decay of the (shot-)noise-to-signal ratio in gz and of the associated phase noise as z(-1/2) and z(-1), respectively.
View Article and Find Full Text PDFHigh-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice.
View Article and Find Full Text PDFX-ray phase-contrast microtomography (XPCμT) is a label-free, high-resolution imaging modality for analyzing early development of vertebrate embryos in vivo by using time-lapse sequences of 3D volumes. Here we provide a detailed protocol for applying this technique to study gastrulation in Xenopus laevis (African clawed frog) embryos. In contrast to μMRI, XPCμT images optically opaque embryos with subminute temporal and micrometer-range spatial resolution.
View Article and Find Full Text PDFAn ambitious goal in biology is to understand the behaviour of cells during development by imaging-in vivo and with subcellular resolution-changes of the embryonic structure. Important morphogenetic movements occur throughout embryogenesis, but in particular during gastrulation when a series of dramatic, coordinated cell movements drives the reorganization of a simple ball or sheet of cells into a complex multi-layered organism. In Xenopus laevis, the South African clawed frog and also in zebrafish, cell and tissue movements have been studied in explants, in fixed embryos, in vivo using fluorescence microscopy or microscopic magnetic resonance imaging.
View Article and Find Full Text PDFWe investigate why in free-space propagation single-distance phase retrieval based on a modified contrast-transfer function of linearized Fresnel theory yields good results for moderately strong pure-phase objects. Upscaling phase-variations in the exit plane, the growth of maxima of the modulus of the Fourier transformed intensity contrast dominates the minima. Cutting out small regions around the latter thus keeps information loss due to nonlocal, nonlinear effects negligible.
View Article and Find Full Text PDFFor coherent X-ray imaging of pure phase objects we study the reliability of linear relations in phase-retrieval algorithms based on a single intensity map after free-space propagation. For large phase changes and/or large propagation distances we propose two venues of working beyond linearity: Projection onto an effective, linear and local model in Fourier space and expansion of intensity contrast in powers of object-detector distance. We apply both algorithms successfully to simulated data.
View Article and Find Full Text PDFPhase contrast in the object plane of a phase object is retrieved from intensity contrast at a {\sl single} object-detector distance. Expanding intensity contrast and phase shift in the detector plane in powers of object-detector distance, phase retrieval is performed beyond the solution to the linearized transport-of-intensity equation. The expansion coefficients are determined by the entire paraxial wave equation.
View Article and Find Full Text PDF