Publications by authors named "Ralf G J C Heijkants"

Background: Meniscectomy will lead to articular cartilage degeneration in the long term. Therefore, the authors developed an implant to replace the native meniscus.

Hypothesis: The porous polymer meniscus implant develops into a neomeniscus and protects the cartilage from degeneration.

View Article and Find Full Text PDF

The continuous development of new biomaterials for tissue engineering and the enhancement of tissue ingrowth into existing scaffolds, using growth factors, create the necessity for developing adequate tools to assess tissue ingrowth rates into porous biomaterials. Current histomorphometric techniques evaluating rates of tissue ingrowth tend either to measure the overall tissue content in an entire sample or to depend on the user to indicate a front of tissue ingrowth. Neither method is particularly suitable for the assessment of tissue ingrowth rates, as these methods either lack the sensitivity required or are problematic when there is a tissue ingrowth gradient rather than an obvious tissue ingrowth front.

View Article and Find Full Text PDF

Polyurethanes based on poly(epsilon-caprolactone) (PCL) (750-2800 g/mol) and 1,4-butane diisocyanate (BDI) with different soft segment lengths and constant uniform hard segment length were synthesized in absence of catalysts for the production of a degradable meniscus scaffold. First the polyesterdiols were endcapped with BDI yielding a macrodiisocyanate with a minimal amount of side reactions and a functionality of 2.0.

View Article and Find Full Text PDF

Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and healing can be realized. Ingrowth of fibrovascular tissue and thus healing capacity depended on porosity, pore sizes and compression modulus of the implant.

View Article and Find Full Text PDF