Publications by authors named "Ralf C Kling"

Histamine H receptor (H R) orthologues are G-protein-coupled receptors (GPCRs) that exhibit species-dependent basal activity. In contrast to the basally inactive mouse H R (mH R), human H R (hH R) shows a high degree of basal activity. We have performed long-timescale molecular dynamics simulations and rigidity analyses on wild-type hH R, the experimentally characterized hH R variants S179M, F169V, F169V+S179M, F168A, and on mH R to investigate the molecular nature of the differential basal activity.

View Article and Find Full Text PDF

Crystal structures of neurotensin receptor subtype 1 (NTS1) allowed us to visualize the binding mode of the endogenous peptide hormone neurotensin and its pharmacologically active C-terminal fragment NT(8-13) within the orthosteric binding pocket of NTS1. Beneath the orthosteric binding pocket, we detected a cavity that exhibits different sequences in the neurotensin receptor subtypes NTS1 and NTS2. In this study, we explored this allosteric binding pocket using bitopic test peptides of type NT(8-13)-Xaa, in which the C-terminal part of NT(8-13) is connected to different amino acids that extend into the newly discovered pocket.

View Article and Find Full Text PDF

The chemokine receptor CXCR3 is a G protein-coupled receptor that conveys extracellular signals into cells by changing its conformation upon ligand binding. We previously hypothesized that small-molecule allosteric CXCR3-agonists do not bind to the same allosteric binding pocket as 8-azaquinazolinone-based negative allosteric modulators. We have now performed molecular-dynamics (MD) simulations with metadynamics enhanced sampling on the CXCR3 system to refine structures and binding modes and to predict the CXCR3-binding affinities of the biased allosteric agonist FAUC1036 and the negative allosteric modulator RAMX3.

View Article and Find Full Text PDF

Stimulation of the NTS2 neurotensin receptor causes antipsychotic effects and leads to a promotion of the μ-opioid-independent antinociception, which is important in the modulation of tonic pain sensitivity. We report the synthesis and properties of a small library of peptidic agonists based on the active neurotensin fragment NT(8-13). Two tetrahydrofuran amino acid derivatives were synthesized to replace Tyr in NT(8-13).

View Article and Find Full Text PDF

Morphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids-which include fatal respiratory depression-are thought to be mediated by μ-opioid-receptor (μOR) signalling through the β-arrestin pathway or by actions at other receptors. Conversely, G-protein μOR signalling is thought to confer analgesia.

View Article and Find Full Text PDF

The neurotensin receptor NTS1 has been suggested to be of pharmaceutical relevance, as it was found to exert modulatory effects on dopaminergic signal transduction and to be involved in tumor progression. Rational drug design of NTS1 receptor ligands requires molecular insights into the binding behavior of a particular lead compound. Although crystal structures of NTS1 have revealed the molecular determinants of peptide-agonist interactions, the binding mode of small-molecule antagonists remains largely unknown.

View Article and Find Full Text PDF

Residue Arg3.50 belongs to the highly conserved DRY-motif of class A GPCRs, which is located at the bottom of TM3. On the one hand, Arg3.

View Article and Find Full Text PDF

Simultaneous targeting of dopamine D2 and 5-HT2A receptors for the treatment of schizophrenia is one key feature of typical and atypical antipsychotics. In most of the top-selling antipsychotic drugs like aripiprazole and risperidone, high affinity to both receptors can be attributed to the presence of 1,4-disubstituted aromatic piperazines or piperidines as primary receptor recognition elements. Taking advantage of our in-house library of phenylpiperazine-derived dopamine receptor ligands and experimental data, we established highly significant CoMFA and CoMSIA models for the prediction of 5-HT2A over D2 selectivity.

View Article and Find Full Text PDF

Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for μOR activation, here we report a 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment.

View Article and Find Full Text PDF

The development of biased (functionally selective) ligands provides a formidable challenge in medicinal chemistry. In an effort to learn to design functionally selective molecular tools for the highly therapeutically relevant dopamine D2 receptor, we synthesized a collection of agonists based on structurally distinct head groups derived from canonical or atypical dopaminergic pharmacophores. The test compounds feature a long lipophilic appendage that was shown to mediate biased signaling.

View Article and Find Full Text PDF

Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation.

View Article and Find Full Text PDF

Subtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure-activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8-13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8-13), we replaced the tyrosine unit by β(2)-amino acids (type 1), by heterocyclic tyrosine bioisosteres (type 2) and peptoid analogues (type 3).

View Article and Find Full Text PDF

Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better.

View Article and Find Full Text PDF

Dopamine D2 receptor-promoted activation of Gα(o) over Gα(i) may increase synaptic plasticity and thereby might improve negative symptoms of schizophrenia. Heterocyclic dopamine surrogates comprising a pyrazolo[1,5-a]pyridine moiety were synthesized and investigated for their binding properties when low- to subnanomolar K(i) values were determined for D(2L), D(2S), and D3 receptors. Measurement of [(35)S]GTPγS incorporation at D(2S) coexpressed with G-protein subunits indicated significant bias for promotion of Gα(o1) over Gα(i2) coupling for several test compounds.

View Article and Find Full Text PDF

Based on the recently described crystal structure of the β2 adrenergic receptor--Gs-protein complex, we report the first molecular-dynamics simulations of ternary GPCR complexes designed to identify the selectivity determinants for receptor-G-protein binding. Long-term molecular dynamics simulations of agonist-bound β2AR-Gαs and D2R-Gαi complexes embedded in a hydrated bilayer environment and computational alanine-scanning mutagenesis identified distinct residues of the N-terminal region of intracellular loop 3 to be crucial for coupling selectivity. Within the G-protein, specific amino acids of the α5-helix, the C-terminus of the Gα-subunit and the regions around αN-β1 and α4-β6 were found to determine receptor recognition.

View Article and Find Full Text PDF

Dopaminergics of types 1 and 2 incorporating a conjugated enyne as an atypical catechol-simulating moiety were synthesized in enantiomerically pure form and investigated for their metabolic stability. Radioligand binding studies indicated high affinity to D2-like receptors. The test compounds were evaluated for their ability to differentially activate distinct signaling pathways.

View Article and Find Full Text PDF