Publications by authors named "Ralf Brandes"

Introduction: Anandamide (AEA) is an endocannabinoid that has recently been recognized as a regulator of various inflammatory diseases as well as cancer. While AEA was thought to predominantly engage cannabinoid (CB) receptors, recent findings suggest that, given its protective anti-inflammatory role in pathological conditions, anandamide may engage not only CB receptors.

Methods: In this study, we studied the role of exogenous AEA in a mouse AirPouch model of acute inflammation by examining immune cell infiltrates by flow cytometry.

View Article and Find Full Text PDF

The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.

View Article and Find Full Text PDF

Background And Purpose: Endocannabinoids are lipid mediators, which elicit complex biological effects that extend beyond the central nervous system. Tissue concentrations of endocannabinoids increase in atherosclerosis, and for the endocannabinoid N-arachidonoyl-ethanolamine (anandamide, AEA), this has been linked to an anti-inflammatory function. In this study, we set out to determine the anti-inflammatory mechanism of action of AEA, specifically focusing on vascular smooth muscle cells.

View Article and Find Full Text PDF

RNA splicing enables the functional adaptation of cells to changing contexts. Impaired splicing has been associated with diseases, including retinitis pigmentosa, but the underlying molecular mechanisms and cellular responses remain poorly understood. In this work, we report that deficiency of ubiquitin-specific protease 39 (USP39) in human cell lines, zebrafish larvae, and mice led to impaired spliceosome assembly and a cytotoxic splicing profile characterized by the use of cryptic 5' splice sites.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O) or physioxic (5 % O) culture and proteomic profiling.

View Article and Find Full Text PDF

The functional role of long noncoding RNAs in the endothelium is highly diverse. Among their many functions, regulation of transcription factor activity and abundance is one of the most relevant. This review summarizes the recent progress in the research on the lncRNA-transcription factor axes and their implications for the vascular endothelium under physiological and pathological conditions.

View Article and Find Full Text PDF

Monocytes, the circulating macrophage precursors, contribute to diseases like atherosclerosis and asthma. Long non-coding RNAs (lncRNAs) have been shown to modulate the phenotype and inflammatory capacity of monocytes. We previously discovered the lncRNA SMANTIS, which contributes to cellular phenotype expression by controlling BRG1 in mesenchymal cells.

View Article and Find Full Text PDF

Interactions of RNA with DNA are principles of gene expression control that have recently gained considerable attention. Among RNA-DNA interactions are R-loops and RNA-DNA hybrid G-quadruplexes, as well as RNA-DNA triplexes. It is proposed that RNA-DNA triplexes guide RNA-associated regulatory proteins to specific genomic locations, influencing transcription and epigenetic decision making.

View Article and Find Full Text PDF

Introduction: The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice.

Methods: We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9 (2x10 VG) and feeding them a cholesterol-rich Western diet.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are important regulators of gene expression and can associate with DNA as RNA : DNA heteroduplexes or RNA ⋅ DNA : DNA triple helix structures. Here, we review in vitro biochemical and biophysical experiments including electromobility shift assays (EMSA), circular dichroism (CD) spectroscopy, thermal melting analysis, microscale thermophoresis (MST), single-molecule Förster resonance energy transfer (smFRET) and nuclear magnetic resonance (NMR) spectroscopy to investigate RNA ⋅ DNA : DNA triple helix and RNA : DNA heteroduplex formation. We present the investigations of the antiparallel triplex-forming lncRNA MEG3 targeting the gene TGFB2 and the parallel triplex-forming lncRNA Fendrr with its target gene Emp2.

View Article and Find Full Text PDF

Corepressors negatively regulate gene expression by chromatin compaction. Targeted regulation of gene expression could provide a means to control endothelial cell phenotype. We hypothesize that by targeting corepressor proteins, endothelial angiogenic function can be improved.

View Article and Find Full Text PDF

Background: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury.

Methods: Native endothelial cells were isolated from young (20±3.

View Article and Find Full Text PDF

Background: Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother.

View Article and Find Full Text PDF

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are post-transcriptional regulators that finetune gene expression via translational repression or degradation of their target mRNAs. Despite their functional relevance, frameworks for the scalable and accurate detection of miRNA orthologs are missing. Consequently, there is still no comprehensive picture of how miRNAs and their associated regulatory networks have evolved.

View Article and Find Full Text PDF
Article Synopsis
  • Tobacco smoking and air pollution are major contributors to chronic obstructive pulmonary disease (COPD), yet not all smokers develop the condition, highlighting the need to explore protective mechanisms against oxidative stress.
  • The study investigated various cohorts by analyzing sputum, lung tissue, and blood samples to measure levels of 3-nitrotyrosine (3-NT), an indicator of oxidative stress, and established a new cell model resistant to cigarette smoke extract (CSE) to understand the relationship between oxidative stress and COPD.
  • Findings suggest that high levels of HO-1 (heme oxygenase-1) are linked to reduced oxidative stress in CSE-resistant cells, while increased expression of CEACAM6 in epithelial cells appears to exacerbate oxidative stress and
View Article and Find Full Text PDF

Background: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear.

Results: exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations ( a decrease in human and mouse PASMC proliferation by 29.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes.

View Article and Find Full Text PDF

Treatment of vascular stenosis with angioplasty results in acute vascular damage, which may lead to restenosis. Owing to the highly complex cellularity of blood vessels, the healing response following this damage is incompletely understood. To gain further insight into this process, scRNA-seq of mouse carotid tissue after wire injury was performed.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) can act as regulatory RNAs which, by altering the expression of target genes, impact on the cellular phenotype and cardiovascular disease development. Endothelial lncRNAs and their vascular functions are largely undefined. Deep RNA-Seq and FANTOM5 CAGE analysis revealed the lncRNA LINC00607 to be highly enriched in human endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • The cytochrome P450 reductase (POR) is crucial for the activity of cytochrome P450 enzymes, which influence the production of beneficial substances like epoxyeicosatrienoic acids (EETs) and reactive oxygen species in the heart.
  • Inducible knockout studies in mice show that when endothelial cells lack POR, there are signs of cardiac remodeling, including increased heart size and changes in gene expression related to cardiac function and mitochondrial activity.
  • Skeletal muscle-specific loss of POR leads to worsened outcomes under pressure overload stress, suggesting that the endothelial POR/CYP450 system is vital for maintaining heart function and protecting against cardiac damage.
View Article and Find Full Text PDF

In healthy vessels, endothelial cells maintain a stable, differentiated, and growth-arrested phenotype for years. Upon injury, a rapid phenotypic switch facilitates proliferation to restore tissue perfusion. Here we report the identification of the endothelial cell-enriched long non-coding RNA (lncRNA) PCAT19, which contributes to the proliferative switch and acts as a safeguard for the endothelial genome.

View Article and Find Full Text PDF

DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing of the RNA in the major groove of the DNA duplex have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit.

View Article and Find Full Text PDF