The electric dipole moment (EDM) plays a crucial role in determining the interaction strength of an atom with electric fields, making it paramount to quantum technologies based on coherent atomic control. We propose a scheme for engineering the potential in a Paul trap to realize a two-level quantum system with a giant EDM formed by the motional states of a trapped electron. We show that, under realistic experimental conditions, our system exhibits enhanced EDMs compared to those attainable with Rydberg atoms, serving as a complementary counterpart in the megahertz (MHz) resonance-frequency range.
View Article and Find Full Text PDFWe present a general approach to derive Lindblad master equations for a subsystem whose dynamics is coupled to dissipative bosonic modes. The derivation relies on a Schrieffer-Wolff transformation which allows us to eliminate the bosonic degrees of freedom after self-consistently determining their state as a function of the coupled quantum system. We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins, which includes the coherent and dissipative interactions mediated by the bosonic mode.
View Article and Find Full Text PDFSingle-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multiqubit system. We show that, if the system can be fully controlled by driving a single qubit, then utilizing a local random pulse is almost always sufficient for complete quantum-state tomography. Experimental demonstrations of this principle are presented using a nitrogen-vacancy (NV) center in diamond coupled to a nuclear spin, which is not directly accessible.
View Article and Find Full Text PDFWe propose a novel strategy to reconstruct the quantum state of dark systems, i.e., degrees of freedom that are not directly accessible for measurement or control.
View Article and Find Full Text PDFHepaRG is a bipotent stem cell line that can be differentiated towards hepatocyte-like and biliary-like cells. The entire cultivation process requires 1 month and relies on the addition of 2% dimethyl sulfoxide (DMSO) to the culture. Our motivation in this research is to differentiate HepaRG cells (progenitor cells and undifferentiated cells) towards hepatocyte-like cells by minimizing the cultivation time and without using DMSO treatment by instead using a microfluidic device combined with the following strategies: (a) comparison of extracellular matrices (matrigel and collagen I), (b) types of flow (one or both sides), and (c) effects of DMSO.
View Article and Find Full Text PDF