The Chesapeake Bay is the largest, most productive, and most biologically diverse estuary in the continental United States providing crucial habitat and natural resources for culturally and economically important species. Pressures from human population growth and associated development and agricultural intensification have led to excessive nutrient and sediment inputs entering the Bay, negatively affecting the health of the Bay ecosystem and the economic services it provides. The Chesapeake Bay Program (CBP) is a unique program formally created in 1983 as a multi-stakeholder partnership to guide and foster restoration of the Chesapeake Bay and its watershed.
View Article and Find Full Text PDFSaginaw Bay and western Lake Erie basin (WLEB) are eutrophic catchments in the Laurentian Great Lakes that experience annual, summer-time cyanobacterial blooms. Both basins share many features including similar size, shallow depths, and equivalent-sized watersheds. They are geographically close and both basins derive a preponderance of their nutrient supply from a single river.
View Article and Find Full Text PDFRoutine monitoring of shellfish growing waters for bacteria indicative of human sewage pollution reveals little about the bacterial communities that co-occur with these indicators. This study investigated the bacterial community, potential pathogens, and fecal indicator bacteria in 40 water samples from a shellfish growing area in the Chesapeake Bay, USA. Bacterial community composition was quantified with deep sequencing of 16S rRNA gene amplicons, and absolute gene abundances were estimated with an internal standard ( genomes).
View Article and Find Full Text PDFThe Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean.
View Article and Find Full Text PDFThe Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.
View Article and Find Full Text PDFVibrio cholerae, the causative agent of cholera, is a naturally occurring inhabitant of the Chesapeake Bay and serves as a predictor for other clinically important vibrios, including Vibrio parahaemolyticus and Vibrio vulnificus. A system was constructed to predict the likelihood of the presence of V. cholerae in surface waters of the Chesapeake Bay, with the goal to provide forecasts of the occurrence of this and related pathogenic Vibrio spp.
View Article and Find Full Text PDF