Advances in label-free optical imaging offer a promising avenue for brain cancer assessment, providing high-resolution, real-time insights without the need for radiation or exogeneous agents. These cost-effective and intricately detailed techniques overcome the limitations inherent in magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans by offering superior resolution and more readily accessible imaging options. This comprehensive review explores a variety of such methods, including photoacoustic imaging (PAI), optical coherence tomography (OCT), Raman imaging, and IR microscopy.
View Article and Find Full Text PDFSignificance: Maternal exposure to drugs during pregnancy is known to have detrimental effects on the fetus. Alcohol (ethanol) and nicotine are two of the most commonly co-abused substances during pregnancy, and prenatal poly-drug exposure is common due, in part, to the prevalence of unplanned pregnancies. The second trimester is a critical period for fetal neurogenesis and angiogenesis.
View Article and Find Full Text PDFLabel-free high-resolution molecular and cellular imaging strategies for intraoperative use are much needed, but not yet available. To fill this void, we developed an artificial intelligence-augmented molecular vibrational imaging method that integrates label-free and subcellular-resolution coherent anti-stokes Raman scattering (CARS) imaging with real-time quantitative image analysis via deep learning (artificial intelligence-augmented CARS or iCARS). The aim of this study was to evaluate the capability of the iCARS system to identify and differentiate the parathyroid gland and recurrent laryngeal nerve (RLN) from surrounding tissues and detect cancer margins.
View Article and Find Full Text PDFAs the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease.
View Article and Find Full Text PDFSignificance: Prenatal exposure to ethanol causes several morphological and neurobehavioral deficits. While there are some studies on the effects of ethanol exposure on blood flow, research focusing on acute changes in the microvasculature is limited.
Aim: The first aim of this study was to assess the dose-dependent changes in murine fetal brain microvasculature of developing fetuses in response to maternal alcohol consumption.
Maternal smoking causes several defects ranging from intrauterine growth restriction to sudden infant death syndrome and spontaneous abortion. While several studies have documented the effects of prenatal nicotine exposure in development and behavior, acute vasculature changes in the fetal brain due to prenatal nicotine exposure have not been evaluated yet. This study uses correlation mapping optical coherence angiography to evaluate changes in fetal brain vasculature flow caused by maternal exposure to nicotine during the second trimester-equivalent of gestation in a mouse model.
View Article and Find Full Text PDFMarijuana is one of the most commonly abused substances during pregnancy. Synthetic cannabinoids (SCBs) are a group of heterogeneous compounds that are 40- to 600-fold more potent than Δ -tetrahydrocannabinol, the major psychoactive component of marijuana. With SCBs being legally available for purchase and the prevalence of unplanned pregnancies, the possibility of prenatal exposure to SCBs is high.
View Article and Find Full Text PDFBackground: Determining biomechanical changes in vaginal tissue with tissue stretch is critical for understanding the role of mechanotransduction on vaginal tissue healing. Noncontact dynamic optical coherence elastography (OCE) can quantify biomechanical changes in vaginal tissues noninvasively. Improved vaginal tissue healing will reduce postoperative complications from vaginal surgery.
View Article and Find Full Text PDFBackground: Embryonic development involves the interplay of driving forces that shape the tissue and the mechanical resistance that the tissue offers in response. While increasing evidence has suggested the crucial role of physical mechanisms underlying embryo development, tissue biomechanics is not well understood because of the lack of techniques that can quantify the stiffness of tissue in situ with 3D high-resolution and in a noncontact manner.
Methods: We used two all-optical techniques, optical coherence tomography (OCT) and Brillouin microscopy, to map the longitudinal modulus of the tissue from mouse embryos in situ.
Prenatal alcohol exposure (PAE) can result in a range of anomalies including brain and behavioral dysfunctions, collectively termed fetal alcohol spectrum disorder. PAE during the 1st and 2nd trimester is common, and research in animal models has documented significant neural developmental deficits associated with PAE during this period. However, little is known about the immediate effects of PAE on fetal brain vasculature.
View Article and Find Full Text PDFEmbryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis.
View Article and Find Full Text PDFOptical coherence elastography (OCE) is an emerging technique for quantifying tissue biomechanical properties. Generally, OCE relies on point-by-point scanning. However, long acquisition times make point-by-point scanning unfeasible for clinical use.
View Article and Find Full Text PDFIn this work we utilize optical coherence elastography (OCE) to assess the effects of UV-A/riboflavin corneal collagen crosslinking (CXL) on the mechanical anisotropy of porcine corneas at various intraocular pressures (IOP). There was a distinct meridian of increased Young's modulus in all samples, and the mechanical anisotropy increased as a function of IOP and also after CXL. The presented noncontact OCE technique was able to quantify the Young's modulus and elastic anisotropy of the cornea and their changes as a function of IOP and CXL, opening new avenues of research for evaluating the effects of CXL on corneal biomechanical properties.
View Article and Find Full Text PDFThe biomechanical properties of the cornea play a critical role in forming vision. Diseases such as keratoconus can structurally degenerate the cornea causing a pathological loss in visual acuity. UV-A/riboflavin corneal collagen crosslinking (CXL) is a clinically available treatment to stiffen the cornea and restore its healthy shape and function.
View Article and Find Full Text PDFThis study demonstrates the feasibility of using the Rayleigh wave model (RWM) in combination with optical coherence elastography (OCE) technique to assess the viscoelasticity of soft tissues. Dispersion curves calculated from the spectral decomposition of OCE-measured air-pulse induced elastic waves were used to quantify the viscoelasticity of samples using the RWM. Validation studies were first conducted on 10% gelatin phantoms with different concentrations of oil.
View Article and Find Full Text PDFQuantifying tissue biomechanical properties can assist in detection of abnormalities and monitoring disease progression and/or response to a therapy. Optical coherence elastography (OCE) has emerged as a promising technique for noninvasively characterizing tissue biomechanical properties. Several mechanical loading techniques have been proposed to induce static or transient deformations in tissues, but each has its own areas of applications and limitations.
View Article and Find Full Text PDFPurpose: The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light.
Methods: Low-amplitude (≤10 μm) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system.
We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.
View Article and Find Full Text PDFEmbryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue.
View Article and Find Full Text PDFHigh-resolution three-dimensional (3D) imaging of cardiovascular dynamics in mouse embryos is greatly desired to study mammalian congenital cardiac defects. Here, we demonstrate direct four-dimensional (4D) imaging of the cardiovascular structure and function in live mouse embryos at a ∼43 Hz volume rate using an optical coherence tomography (OCT) system with a ∼1.5 MHz Fourier domain mode-locking swept laser source.
View Article and Find Full Text PDFWe present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessment of biomechanical properties of tissues with micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of a proper mechanical model is required.
View Article and Find Full Text PDF