Publications by authors named "Raksha Ganesh"

G protein-coupled receptor 56 (GPR56/ADGRG1) is a multifunctional adhesion GPCR involved in diverse biological processes ranging from development to cancer. In our earlier study, we reported that GPR56 is expressed heterogeneously in glioblastoma (GBM) and is involved in the mesenchymal transition, making it a promising therapeutic target (Ganesh et al., 2022).

View Article and Find Full Text PDF

G protein-coupled receptor 56 (GPR56/ADGRG1) is an adhesion GPCR with an essential role in brain development and cancer. Elevated expression of GPR56 was observed in the clinical specimens of Glioblastoma (GBM), a highly invasive primary brain tumor. However, we found the expression to be variable across the specimens, presumably due to the intratumor heterogeneity of GBM.

View Article and Find Full Text PDF

Glioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns.

View Article and Find Full Text PDF

Gliomas are heavily infiltrated with immune cells of myeloid origin. Past studies have shown that high-grade gliomas have a higher proportion of alternatively activated and suppressive myeloid cells when compared to low-grade gliomas, which correlate with poor prognosis. However, the differences in immune cell phenotypes within high-grade gliomas (between grade 3 and grade 4 or GBM) are relatively less explored, and a correlation of phenotypic characteristics between immune cells in the blood and high-grade tumors has not been performed.

View Article and Find Full Text PDF

GPR56/ADGRG1 is a member of the adhesion G-protein coupled receptor (aGPCR) family and one of the important players in the normal development of the brain. It plays a pivotal role in the diverse neurobiological processes, including cortical formation, oligodendrocyte development, and myelination. Mutations in GPR56 are known to cause brain malformation, myelination defects and are also implied in many cancers, including brain tumors.

View Article and Find Full Text PDF

We have studied differentially regulated nuclear proteome of the clinical tissue specimens of glioblastoma (GBM, WHO Grade IV) and lower grades of gliomas (Grade II and III) using high resolution mass spectrometry- based quantitative proteomics approach. The results showed altered expression of many regulatory proteins from the nucleus such as DNA binding proteins, transcription and post transcriptional processing factors and also included enrichment of nuclear proteins that are targets of granzyme signaling - an immune surveillance pathway. Protein - protein interaction network analysis using integrated proteomics and transcriptomics data of transcription factors and proteins for cell invasion process (drawn from another GBM dataset) revealed YBX1, a ubiquitous RNA and DNA-binding protein and a transcription factor, as a key interactor of major cell invasion-associated proteins from GBM.

View Article and Find Full Text PDF

Splice variants are known to be important in the pathophysiology of tumors, including the brain cancers. We applied a proteogenomics pipeline to identify splice variants in glioblastoma (GBM, grade IV glioma), a highly malignant brain tumor, using in-house generated mass spectrometric proteomic data and public domain RNASeq dataset. Our analysis led to the identification of a novel exon that maps to the long isoform of Neural cell adhesion molecule 1 (NCAM1), expressed on the surface of glial cells and neurons, important for cell adhesion and cell signaling.

View Article and Find Full Text PDF
Article Synopsis
  • A series of novel quinazolinone hybrids were developed via click chemistry and tested for their ability to inhibit cancer cell growth, with HeLa cells showing the highest sensitivity.
  • The active hybrids exhibited G1 cell cycle arrest and induced cellular senescence, as confirmed by FACS analysis and β-gal staining assays.
  • The most effective compound, hybrid (4q), led to significant changes in tumor suppressor protein expression and showed promising interactions with HDACs, suggesting potential avenues for cancer therapy.
View Article and Find Full Text PDF

A series of new conjugates of quinazolino linked 4β-amidopodophyllotoxins 10aa-af and 10ba-bf were synthesized and evaluated for their anticancer activity against human pancreatic carcinoma (Panc-1) as well as breast cancer cell lines such as MCF-7 and MDA-MB-231 by employing MTT assay. Among these conjugates, some of them like 10bc, 10bd, 10be and 10bf exhibited high potency of cytotoxicity. Flow cytometric analysis showed that these conjugates arrested the cell cycle in the G2/M phase and caused the increase in expression of p53 and cyclin B1 protein with concomitant decrease in Cdk1 thereby suggesting the inhibitory action of these conjugates on mitosis.

View Article and Find Full Text PDF

Haploinsufficiency of tumor suppressor genes, wherein the reduced production and activity of proteins results in the inability of the cell to maintain normal cellular function, is one among the various causes of cancer. However the precise molecular mechanisms underlying this condition remain unclear. Here we hypothesize that single nucleotide polymorphisms (SNPs) in the 3'untranslated region (UTR) of mRNAs and microRNA seed sequence (miR-SNPs) may cause haploinsufficiency at the level of proteins through altered binding specificity of microRNAs (miRNAs).

View Article and Find Full Text PDF

MicroRNAs are endogenously expressed tiny non-coding RNAs that control gene expression at the post-transcriptional level and regulate processes of cell growth, differentiation, proliferation and apoptosis. Aberrant expression of microRNAs correlates with various cancers. Our experiments demonstrated that imidazo-benzothiazole conjugates caused apoptosis in colon cancer cells by modulating the expression of microRNAs.

View Article and Find Full Text PDF