Publications by authors named "Rakia Chouari"

The reuse of wastewater in agriculture can be environmentally beneficial due to its abundance of nutrients that promote plant growth and soil fertility. However, wastewater effluents (WWE) are often considered sources of dissemination of bacteria, antibiotics, heavy metal resistance genes, and pathogens. In this study, we employed a combination of gamma irradiation and bioaugmentation as a strategy for WWE treatment.

View Article and Find Full Text PDF

In arid and semi-arid regions, the use of treated wastewater (TWW) for irrigation is gaining ground to alleviate pressure on natural water sources. Despite said treatment, the existing methods fail to eliminate potentially dangerous contaminants. As such, this study assessed the impact of long-term TWW irrigation (5 and 25 years) on soil physicochemical properties and bacterial resistance to heavy metals (Pb, Cu, Cd) and antibiotics (tetracycline and amoxicillin).

View Article and Find Full Text PDF

The reuse of water using effluents containing antibiotics from anthropogenic activities has been mainly linked to the development of antibiotic resistance. However, we report that the development of bacterial tolerance promotes plant growth. In the present study, we aimed to evaluate the efficiency of inoculation of a new antibiotic-degrading bacterium, Erwinia strain S9, in augmenting the tolerance of pea (Pisum sativum L.

View Article and Find Full Text PDF

The present study aims to characterize the plant growth-promoting bacterial traits of Bacillus simplex (strain 115). This bacterium was inoculated in hydroponically conditions to improve pea (Pisum sativum L.) growth submitted to lead (Pb) toxicity.

View Article and Find Full Text PDF

In this study, we investigated effects of lead on growth response and antioxidant defense protection in a new identified strain isolated from a soil, in the rhizosphere of Sainfoin Hedysarum coronarium L. Different concentrations of lead (0, 0.2, 1.

View Article and Find Full Text PDF

Knowledge of archaeal population structure, function and interactions is of great interest for a deeper understanding of the anaerobic digestion step in wastewater treatment process, that represents a bottle neck in the optimization of digesters performance. Although culture-independent techniques have enabled the exploration of archaeal population in such systems, their population dynamics and interactions still require further investigation. In the present study, 2646 almost full archaeal 16S rRNA gene sequences retrieved from 22 anaerobic digesters located worldwide were analyzed and classified into 83 Operational Taxonomic Units (OTUs) for and 2 OTUs for .

View Article and Find Full Text PDF

Wastewater microbiota represents important actors of organic depollution. Nowadays, some species used as bioindicators of the effluent quality are still identified by microscopy. In the present study, we investigated eukaryotic diversity at the different steps of the treatment process of a wastewater treatment plant (aerobic, anaerobic, clarifier basins and anaerobic digester) using the 18S rRNA gene sequencing approach.

View Article and Find Full Text PDF

The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C.

View Article and Find Full Text PDF

16S rRNA Crenarchaeota and Thermoplasmata sequences retrieved from 22 anaerobic digesters were analysed. 4.8 and 0.

View Article and Find Full Text PDF

Clones of the WWE1 (Waste Water of Evry 1) candidate division were retrieved during the exploration of the bacterial diversity of an anaerobic mesophilic (35 ± 0.5°C) digester. In order to investigate the metabolic function of WWE1 members, a 16S rRNA gene -based stable isotope probing (SIP) method was used.

View Article and Find Full Text PDF

We collected samples of anaerobic landfill leachate from municipal solid waste landfill (Vert-le-Grand, France) and constructed 16S rRNA clone libraries using primers targeting Planctomycetes and relatives (Pla46F and 1390R). Analyses of 16S rRNA gene sequences resulted in the abundant representation of WWE2-related Lentisphaerae, members of the phylum Lentisphaerae, in the clone library (98% of the retrieved sequences). Although the sequences that are phylogenetically affiliated with the cultured isolate Victivallis vadensis were identified (WWE2 subgroup II), the majority of the sequences were affiliated with an uncultured Lentisphaerae lineage (WWE2 subgroup I).

View Article and Find Full Text PDF

A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in an anoxic activated sludge from a municipal wastewater treatment plant. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by polymerase chain reaction using primers specific for archaeal or bacterial domains. Phylogenetic analysis of 132 and 249 almost full-length 16S rRNA genes for Archaea and Bacteria, respectively, was done using the ARB software package.

View Article and Find Full Text PDF

The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28).

View Article and Find Full Text PDF

Many microorganisms live in anaerobic environments. Most of these microorganisms have not yet been cultivated. Here, we present, from a metagenomic analysis of an anaerobic digester of a municipal wastewater treatment plant, a reconstruction of the complete genome of a bacterium belonging to the WWE1 candidate division.

View Article and Find Full Text PDF

A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in an anaerobic sludge digester. Two 16S rRNA gene libraries were constructed using total genomic DNA, and amplified by polymerase chain reaction (PCR) using primers specific for archaeal or bacterial domains. Phylogenetic analysis of 246 and 579 almost full-length 16S rRNA genes for Archaea and Bacteria, respectively, was performed using the ARB software package.

View Article and Find Full Text PDF

In a previous study, we analyzed the molecular diversity of Planctomycetales by PCR amplification and sequencing of 16S rRNA clone libraries generated from a municipal wastewater plant, using planctomycete-specific and universal primer sets (R. Chouari, D. Le Paslier, P.

View Article and Find Full Text PDF

We examined anoxic and aerobic basins and an anaerobic digestor of a municipal wastewater treatment plant for the presence of novel planctomycete-like diversity. Three 16S rRNA gene libraries were constructed by using a 16S rRNA-targeted universal reverse primer and a forward PCR primer specific for Planctomyces: Phylogenetic analysis of 234 16S rRNA gene sequences defined 110 operational taxonomic units. The majority of these sequences clustered with the four known genera, Pirellula (32%), Planctomyces (18.

View Article and Find Full Text PDF