Publications by authors named "Rakhi Dhankhar"

In the present study, nutraceutical citrulline was produced using immobilization of permeabilized whole cells of Pseudomonas furukawaii, an efficient producer of ADI. Since arginine deiminase (ADI) is intracellularly localized, various additives such as SDS (Sodium dodecyl sulfate), Triton X-100, and EDTA (Ethylenediaminetetraacetic Acid) were used to permeabilize the cell to improve substrate accessibility and ADI activity. The maximum ADI activity was observed with 0.

View Article and Find Full Text PDF

Unlabelled: Arginine deiminase (ADI), a promising anticancer enzyme from is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, 24 was identified as a potent producer of ADI with optimum activity under physiological conditions.

View Article and Find Full Text PDF

Arginine deiminase is a well-recognized guanidino-modifying hydrolase that catalyzes the conversion of L-arginine to citrulline and ammonia. Their biopotential to regress tumors via amino acid deprivation therapy (AADT) has been well established. PEGylated formulation of recombinant Mycoplasma ADI is in the last-phase clinical trials against various arginine-auxotrophic cancers like hepatocellular carcinoma, melanoma, and mesothelioma.

View Article and Find Full Text PDF

Enzyme prodrug therapy has gained momentum in recent years due to its ability to improve therapeutic index (benefits versus toxic side-effects) and efficacy of chemotherapy in cancer treatment. Inactive prodrugs used in this system are converted into active anti-cancerous drugs by enzymes, specifically within the tumor cells. This therapy involves three components namely prodrug, enzyme and gene delivery vector.

View Article and Find Full Text PDF

Phenylalanine ammonia lyase (PAL) has recently emerged as an important therapeutic enzyme with several biomedical applications. The enzyme catabolizes l-phenylalanine to trans-cinnamate and ammonia. PAL is widely distributed in higher plants, some algae, ferns, and microorganisms, but absent in animals.

View Article and Find Full Text PDF

Cyclotides is a rapidly growing class of plant-derived cyclic peptides exhibiting several bioactivities with potential applications in the agricultural and pharmaceutical sectors. Both natural and grafted cyclotides have shown promise in cancer therapy. Approximately 70 natural cyclotides belonging to three plant families (Fabaceae, Rubiaceae, and Violaceae) have shown cytotoxicity against several cancer cell lines.

View Article and Find Full Text PDF

Amino acid deprivation therapy (AADT) is emerging as a promising strategy for the development of novel therapeutics against cancer. This biological therapy relies upon the differences in the metabolism of cancer and normal cells. The rapid growth of tumors results in decreased expression of certain enzymes leading to auxotrophy for some specific amino acids.

View Article and Find Full Text PDF

In the present study a high arginine deiminase (ADI) yielding bacterium was isolated from soil samples of Haryana, India and identified as Pseudomonas furukawaii. The specific enzyme activity was optimized to 1.420 IU/ml by OFAT and further enhanced to 2.

View Article and Find Full Text PDF

Introduction: Rise in incidence of various cancers and growing adoption of biological therapy to avoid side effects of conventional cancer therapies is driving the growth of the cancer biotherapy market globally. One such therapy available for the treatment of certain tumors employs arginine-lowering enzymes (ALEs). Several patents have been filed in this technology domain, and many Phase I/II clinical trials of the ALEs especially arginine deiminase (ADI) are underway.

View Article and Find Full Text PDF