Publications by authors named "Rakesh Rajegowda"

The controlled transport of water through nanoscale devices is an important requirement in the design and development of various nanofluidic systems. Molecular dynamics simulations are performed to investigate the phonon coupling induced thermophoretic transport of water through a carbon nanotube (CNT). Phonon coupling is believed to have a significant role in the transport of heat at the liquid-solid interface.

View Article and Find Full Text PDF

We propose a new design for thermally induced water pumping through carbon nanotubes by imposing a thermal gradient along the length of a carbon nanotube (CNT), which connects two water-filled reservoirs. We analyse the flow parameters by varying the imposed thermal gradient (4.62 to 20.

View Article and Find Full Text PDF

We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene.

View Article and Find Full Text PDF

Thermal-gradient induced transport of ionic liquid (IL) and water droplets through a carbon nanotube (CNT) is investigated in this study using molecular dynamics simulations. Energetic analysis indicates that IL transport through a CNT is driven primarily by the fluid-solid interaction, while fluid-fluid interactions dominate in water-CNT systems. Droplet diffusion analysis via the moment scaling spectrum reveals sub-diffusive motion of the IL droplet, in contrast to the self-diffusive motion of the water droplet.

View Article and Find Full Text PDF