Synthetic antisense oligonucleotides (ASOs) are emerging as an attractive platform to treat various diseases. By specifically binding to a target mRNA transcript through Watson-Crick base pairing, ASOs can alter gene expression in a desirable fashion to either rescue loss of function or downregulate pathogenic protein expression. To be clinically relevant, ASOs are generally synthesized using modified analogs to enhance resistance to enzymatic degradation and pharmacokinetic and dynamic properties.
View Article and Find Full Text PDFThere is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies.
View Article and Find Full Text PDFThe last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins.
View Article and Find Full Text PDFIn recent years, several splice switching antisense oligonucleotide (ASO)-based therapeutics have gained significant interest, and several candidates received approval for clinical use for treating rare diseases, in particular, Duchenne muscular dystrophy and spinal muscular atrophy. These ASOs are fully modified; in other words, they are composed of chemically modified nucleic acid analogues instead of natural RNA oligomers. This has significantly improved drug-like properties of these ASOs in terms of efficacy, stability, pharmacokinetics, and safety.
View Article and Find Full Text PDFCancer is one of the leading causes of death globally. Epidermal growth factor receptor is one of the proteins involved in cancer cell proliferation, differentiation, and invasion. Antisense oligonucleotides are chemical nucleic acids that bind to target messenger ribonucleic acid and modulate its expression.
View Article and Find Full Text PDFA diverse array of organic and inorganic materials, including nanomaterials, has been extensively employed in multifunctional biomedical applications. These applications encompass drug/gene delivery, tissue engineering, biosensors, photodynamic and photothermal therapy, and combinatorial sciences. Surface and bulk engineering of these materials, by incorporating biomolecules and aptamers, offers several advantages such as decreased cytotoxicity, improved stability, enhanced selectivity/sensitivity toward specific targets, and expanded multifunctional capabilities.
View Article and Find Full Text PDFGiven the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes.
View Article and Find Full Text PDFNucleic acids drugs have been proven in the clinic as a powerful modality to treat inherited and acquired diseases. However, key challenges including drug stability, renal clearance, cellular uptake, and movement across biological barriers (foremost the blood-brain barrier) limit the translation and clinical efficacy of nucleic acid-based therapies, both systemically and in the central nervous system. In this study we provide an overview of an emerging class of nucleic acid therapeutic, called DNAzymes.
View Article and Find Full Text PDFRecent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues.
View Article and Find Full Text PDF2'--Methyl (2'-OMe) antisense oligonucleotides (AOs) possessing a various number of 4-(trimethylammonio)butylsulfonyl or tosyl phosphoramidates (N+ and Ts-modifications, respectively) instead of a native phosphodiester linkage were designed to skip exon-23 in dystrophin pre-mRNA transcript in mdx mice myotubes. AOs bearing several zwitterionic N+ modifications in the sequence had remarkably increased thermal stability towards complementary mRNA in comparison with 2'-OMe-RNAs having negatively charged Ts and phosphorothioate (PS) linkages. However, only Ts-modified AOs exhibited a similar level of exon skipping in comparison with fully modified PS-containing 2'-OMe-RNA, whereas the exon skipping induced by N+ modified AOs was much lower with no exon-skipping detected for AOs having seven N+ modifications.
View Article and Find Full Text PDFSynthetic antisense oligonucleotides (ASOs) have emerged as one of the most promising therapeutic approaches. So far, nine ASO drugs have received approval for clinical use, and four of them are based on splice-switching principles demonstrating the impact of ASO-mediated splice modulation. Notably, three among them (Exondys 51, Vyondys 53 and Viltepso) are based on phosphorodiamidate morpholino (PMO) chemistry whereas Spinraza is based on 2'--methoxyethyl phosphorothioate (2'-MOE PS) chemistry.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
June 2022
Novel 3'-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidine analogues () were developed by the Cu alkyne-azide cycloaddition (CuAAC) reaction. The obtained lead compounds were confirmed by using H NMR, C NMR, 2 D NMR, HRMS and their anticancer activities were screened against Huh-7 liver cancer cells and U87MG human glioblastoma cells. Among the synthesized fluorinated 1,2,3-triazolyl nucleosides, three compounds () demonstrated promising anti-proliferative against Huh-7 and U87MG cell lines.
View Article and Find Full Text PDFThe nucleotide monomer containing the 1-phenyl-1,2,3-triazole group attached to the 5-position of 2'-O-methyluridine is hereby presented together with a derivative further substituted with a p-sulfonamide group on the phenyl ring. Both were conveniently synthesised, and synergistic effect of the modifications were demonstrated when introduced into oligonucleotides and hybridised to complementary RNA. The combination of stacking of the phenyltriazoles and the conformational steering from the 2'-OMe group gave thermally very stable duplexes.
View Article and Find Full Text PDFSplicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer.
View Article and Find Full Text PDFWe have found that antisense oligonucleotides and siRNA molecules modified with repeat structures of disulfide units can be directly introduced into the cytoplasm and exhibit a suppressive effect on gene expression. In this study, we analyzed the mechanism of cellular uptake of these membrane-permeable oligonucleotides (MPONs). Time-course analysis by confocal microscopy showed that the uptake of MPONs from the plasma membrane to the cytoplasm reached 50 % of the total uptake in about 5 min.
View Article and Find Full Text PDFOligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2'-O-methyl (2'OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2'OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9.
View Article and Find Full Text PDFLateral flow assay (LFA) has made a paradigm shift in the diagnosis field due to its rapid turnaround time, ease of operation and exceptional affordability. Currently used LFAs predominantly use antibodies. However, the high inter-batch variations, error margin and storage requirements of the conventional antibody-based LFAs significantly impede its applications.
View Article and Find Full Text PDFCancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need.
View Article and Find Full Text PDFScreening molecular libraries for ligands capable of binding proteins is widely used for hit identification in the early drug discovery process. Oligonucleotide libraries provide a very high diversity of compounds, while the combination of the polymerase chain reaction and DNA sequencing allow the identification of ligands in low copy numbers selected from such libraries. Ligand selection from oligonucleotide libraries requires mixing the library with the target followed by the physical separation of the ligand-target complexes from the unbound library.
View Article and Find Full Text PDFNucleic Acid Ther
February 2021
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level.
View Article and Find Full Text PDFBrain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma.
View Article and Find Full Text PDFSplice-modulating antisense therapy has shown tremendous potential in therapeutic development in recent years with four FDA-approved antisense drugs since 2016. However, an efficient and nontoxic antisense oligonucleotide (AO) delivery system still remains as a major obstacle in nucleic acid therapeutics field. Vitamin-E (α-tocopherol) is an essential dietary requirement for human body.
View Article and Find Full Text PDFThe hyperphosphorylation of the microtubule-associated protein tau (MAPT) has been implicated in various neurological diseases, including Alzheimer's disease. It has been hypothesized that the reduction of MAPT would result in depolymerizing neurofibrillary tangles and could be a potential strategy for the treatment of Alzheimer's disease and other tauopathies. In this study, we report the development of novel DNAzymes and splice-modulating antisense oligonucleotides (AOs) for the efficient inhibition of MAPT.
View Article and Find Full Text PDF