Publications by authors named "Rakesh Kumar Harishchandra"

Previous research has shown that ectoines fluidize lipid monolayers by increasing the liquid expanded region in DPPC monolayers and also decreasing the line tension responsible for the phase morphology. Here, we explored possible effects of the compatible osmolytes ectoine, hydroxyectoine and β-hydroxybutyrate on lipid bilayer membranes, including effects of temperature and pressure. The effect of the protective osmolytes on the phase transition of DPPC bilayers was investigated by fluorescence spectroscopy, differential scanning calorimetry and pressure perturbation calorimetry.

View Article and Find Full Text PDF

The tear fluid lipid layer is present at the outermost part of the tear film which lines the ocular surface and functions to maintain the corneal surface moist by retarding evaporation. Instability in the structure of the tear fluid lipid layer can cause an increased rate of evaporation and thus dry eye syndrome. Ectoine has been previously shown to fluidize lipid monolayers and alter the phase behavior.

View Article and Find Full Text PDF

The tear fluid lipid layer is the outermost part of the tear film on the ocular surface which protects the eye from inflammations and injuries. We investigated the influence of ectoine on the structural organization of natural meibomian lipid films using surface activity analysis and topographical studies. These films exhibit a continuous pressure-area isotherm without any phase transition.

View Article and Find Full Text PDF

The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems.

View Article and Find Full Text PDF

The influence of hydroxyectoine on the properties of the aqueous solution in presence of DPPC lipid bilayers is studied via semi-isotropic constant pressure (NPT) Molecular Dynamics simulations. We investigate the solvent-co-solute behavior in terms of Kirkwood-Buff integrals as well as hydrogen bond life times for an increasing hydroxyectoine concentration up to 0.15mol/L.

View Article and Find Full Text PDF

The pulmonary surfactant film spanning the inner alveolar surface prevents alveolar collapse during the end-exhalation and reduces the work of breathing. Nanoparticles (NPs) present in the atmosphere or nanocarriers targeted through the pulmonary route for medical purposes challenge this biological barrier. During interaction with or passage of NPs through the alveolar surfactant, the biophysical functioning of the film may be altered.

View Article and Find Full Text PDF

We have performed Molecular Dynamics simulations of ectoine, hydroxyectoine and urea in explicit solvent. Special attention has been spent on the local surrounding structure of water molecules. Our results indicate that ectoine and hydroxyectoine are able to accumulate more water molecules than urea by a pronounced ordering due to hydrogen bonds.

View Article and Find Full Text PDF

Ectoine and hydroxyectoine belong to the family of compatible solutes and are among the most abundant osmolytes in nature. These compatible solutes protect biomolecules from extreme conditions and maintain their native function. In the present study, we have investigated the effect of ectoine and hydroxyectoine on the domain structures of artificial lung surfactant films consisting of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and the lung surfactant specific surfactant protein C (SP-C) in a molar ratio of 80:20:0.

View Article and Find Full Text PDF

Compatible solutes are small organic osmolytes responsible for osmotic balance and at the same time compatible with the cellular metabolism. Here, we have investigated the effect of the compatible solutes, ectoine and hydroxyectoine, on the fluid-rigid domain structure of lipid monolayer and bilayer membranes. Mainly saturated dipalmitoyl-phosphatidylcholine membranes exhibiting a clear le/lc phase transition were used.

View Article and Find Full Text PDF

One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7mje0732358fhoe5e089uo2ksdbrspof): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once