Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration.
View Article and Find Full Text PDFThe self-assembly of nanocellulose in the form of cellulose nanofibers (CNFs) can be accomplished via hydrogen-bonding assistance into completely bio-based hydrogels. This study aimed to use the intrinsic properties of CNFs, such as their ability to form strong networks and high absorption capacity and exploit them in the sustainable development of effective wound dressing materials. First, TEMPO-oxidized CNFs were separated directly from wood (W-CNFs) and compared with CNFs separated from wood pulp (P-CNFs).
View Article and Find Full Text PDFThe skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis.
View Article and Find Full Text PDFA prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape.
View Article and Find Full Text PDFCutaneous wounds can lead to huge suffering for patients. Early fetal wounds have the capacity to regenerate without scar formation. Amniotic fluid (AF), containing hyaluronic acid (HA), may contribute to this regenerative environment.
View Article and Find Full Text PDFIn this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated.
View Article and Find Full Text PDFThis study aims to utilize the natural composition of brown seaweed by deriving alginate and cellulose concurrently from the stipe (stem-like) and blade (leaf-like) structures of the seaweed; further, this is followed by fibrillation for the direct and resource-efficient preparation of alginate/cellulose nanofiber (CNF) hybrid inks for three-dimensional (3D) printing of hydrogels. The efficiency of the fibrillation process was evaluated, and the obtained gels were further studied with regard to their rheological behavior. As a proof of concept, the inks were 3D printed into discs, followed by cross-linking with CaCl to form biomimetic hydrogels.
View Article and Find Full Text PDFA conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) compared with posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in and mouse.
View Article and Find Full Text PDFThe possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers.
View Article and Find Full Text PDFScarring is an extensive problem in burn care, and treatment can be especially complicated in cases of hypertrophic scarring. Contraction is an important factor in scarring but the contribution of different cell types remains unclear. We have investigated the contractile behavior of keratinocytes, melanocytes and fibroblasts by using an in vitro collagen gel assay aimed at identifying a modulating role of melanocytes in keratinocyte-mediated contraction.
View Article and Find Full Text PDFThe ultimate goal of vascular tissue engineering is the production of functional grafts for clinical use. Difficulties acquiring autologous endothelial cells have motivated the search for alternative cell sources. Differentiation of dermal fibroblasts towards several mesenchymal lineages as well as endothelial cells has been proposed.
View Article and Find Full Text PDFAutologous cell-based therapies promise important developments for reconstructive surgery. In vitro expansion as well as differentiation strategies could provide a substantial benefit to cellular therapies. Human dermal fibroblasts, considered ubiquitous connective tissue cells, can be coaxed towards different cellular fates, are readily available and may altogether be a suitable cell source for tissue engineering strategies.
View Article and Find Full Text PDF