Publications by authors named "Raka M Mitra"

In plant-microbe interactions, symbionts and pathogens live within plants and attempt to avoid triggering plant defense responses. In order to do so, these microbes have evolved multiple mechanisms that target components of the plant cell nucleus. Rhizobia-induced symbiotic signaling requires the function of specific legume nucleoporins within the nuclear pore complex.

View Article and Find Full Text PDF

Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown.

View Article and Find Full Text PDF

Phytopathogenic bacteria secrete type III effector (T3E) proteins directly into host plant cells. T3Es can interact with plant proteins and frequently manipulate plant host physiological or developmental processes. The proper subcellular localization of T3Es is critical for their ability to interact with plant targets, and knowledge of T3E localization can be informative for studies of effector function.

View Article and Find Full Text PDF

Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant-pathogen interactions.

View Article and Find Full Text PDF

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago.

View Article and Find Full Text PDF

Unlabelled: During bacterial wilt of tomato, the plant pathogen Ralstonia solanacearum upregulates expression of popS, which encodes a type III-secreted effector in the AvrE family. PopS is a core effector present in all sequenced strains in the R. solanacearum species complex.

View Article and Find Full Text PDF

Expression profiling of wild-type plants and mutants with defects in key components of the defense signaling network was used to model the Arabidopsis network 24 h after infection by Pseudomonas syringae pv. maculicola ES4326. Results using the Affymetrix ATH1 array revealed that expression levels of most pathogen-responsive genes were affected by mutations in coi1, ein2, npr1, pad4, or sid2.

View Article and Find Full Text PDF

Rhizobial bacteria activate the formation of nodules on the appropriate host legume plant, and this requires the bacterial signaling molecule Nod factor. Perception of Nod factor in the plant leads to the activation of a number of rhizobial-induced genes. Putative transcriptional regulators in the GRAS family are known to function in Nod factor signaling, but these proteins have not been shown to be capable of direct DNA binding.

View Article and Find Full Text PDF

The symbiotic association between legumes and nitrogen-fixing bacteria collectively known as rhizobia results in the formation of a unique plant root organ called the nodule. This process is initiated following the perception of rhizobial nodulation factors by the host plant. Nod factor (NF)-stimulated plant responses, including nodulation-specific gene expression, is mediated by the NF signaling pathway.

View Article and Find Full Text PDF

Studies of the behavior of biological systems often require monitoring of the expression of many genes in a large number of samples. While whole-genome arrays provide high-quality gene-expression profiles, their high cost generally limits the number of samples that can be studied. Although inexpensive small-scale arrays representing genes of interest could be used for many applications, it is challenging to obtain accurate measurements with conventional small-scale microarrays.

View Article and Find Full Text PDF

The Rhizobium-legume symbiosis culminates in the exchange of nutrients in the root nodule. Bacteria within the nodule reduce molecular nitrogen for plant use and plants provide bacteria with carbon-containing compounds. Following the initial signaling events that lead to plant infection, little is known about the plant requirements for establishment and maintenance of the symbiosis.

View Article and Find Full Text PDF

Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase.

View Article and Find Full Text PDF

As the legume-rhizobia symbiosis is established, the plant recognizes bacterial-signaling molecules, Nod factors (NFs), and initiates transcriptional and developmental changes within the root to allow bacterial invasion and the construction of a novel organ, the nodule. Plant mutants defective in nodule initiation (Nod(-)) are thought to have defects in NF-signal transduction. However, it is unknown whether WT plants respond to NF-independent bacterial-derived signals or whether Nod(-) plant mutants show defects in global symbiosis-associated gene expression.

View Article and Find Full Text PDF

In the establishment of the legume-rhizobial symbiosis, bacterial lipochitooligosaccharide signaling molecules termed Nod factors activate the formation of a novel root organ, the nodule. Nod factors elicit several responses in plant root hair cells, including oscillations in cytoplasmic calcium levels (termed calcium spiking) and alterations in root hair growth. A number of plant mutants with defects in the Nod factor signaling pathway have been identified.

View Article and Find Full Text PDF

In the Medicago truncatula/Sinorhizobium meliloti symbiosis, the plant undergoes a series of developmental changes simultaneously, creating a root nodule and allowing bacterial entry and differentiation. Our studies of plant genes reveal novel transcriptional regulation during the establishment of the symbiosis and identify molecular markers that distinguish classes of plant and bacterial symbiotic mutants. We have identified three symbiotically regulated plant genes encoding a beta,1-3 endoglucanase (MtBGLU1), a lectin (MtLEC4), and a cysteine-containing protein (MtN31).

View Article and Find Full Text PDF

Bacterial Nod factors trigger a number of cellular responses in root hairs of compatible legume hosts, which include periodic, transient increases in cytosolic calcium levels, termed calcium spiking. We screened 13 pharmaceutical modulators of eukaryotic signal transduction for effects on Nod factor-induced calcium spiking. The purpose of this screening was 2-fold: to implicate enzymes required for Nod factor-induced calcium spiking in Medicago sp.

View Article and Find Full Text PDF