In this work, we demonstrate controlled introduction of O-functional groups on commercial carbon nanotube fibers (CNTFs) with different nanotube morphologies obtained by dry- and wet-spinning by treatment with gaseous ozone (O₃(g)). Our test samples were (1) wet-spun fibers of smalldiameter (1-2 nm) singlewall (SW)-CNTs and (2) dry-spun fibers containing large-diameter (20 nm) multiwall (MW)-CNTs. Our results indicate that SW-CNTFs undergo oxygenation to a higher extent than MW-CNTFs due to the higher reactivity of SW-CNTs with a larger curvature strain.
View Article and Find Full Text PDFWe present research progress made in developing copper/carbon nanotube composites (Cu/CNT) to fulfil a growing demand for lighter copper substitutes with superior electrical, thermal and mechanical performances. Lighter alternatives to heavy copper electrical and data wiring are needed in automobiles and aircrafts to enhance fuel efficiencies. In electronics, better interconnects and thermal management components than copper with higher current- and heat-stabilities are required to enable device miniaturization with increased functionality.
View Article and Find Full Text PDFTranslating the remarkable mechanical properties of individual carbon nanotubes to macroscopic assemblies presents a unique challenge in maximizing the potential of these remarkable entities for new materials. Infinitely long individual nanotubes would represent the ideal molecular building blocks; however, in the case of length-limited nanotubes, typically in the range of micro- and millimeters, an alternative strategy could be based on the improvement of the mechanical coherency between bundles assembling the macroscopic materials, like fibers or films. Here, we present a method to enhance the mechanical performance of fibers continuously spun from a CVD reactor, by a postproduction processing methodology utilizing a chemical agent aided by UV irradiation.
View Article and Find Full Text PDF