This study presents a machine learning (ML) framework aimed at accelerating the discovery of multi-property optimized Fe-Ni-Co alloys, addressing the time-consuming, expensive, and inefficient nature of traditional methods of material discovery, development, and deployment. We compiled a detailed heterogeneous database of the magnetic, electrical, and mechanical properties of Fe-Co-Ni alloys, employing a novel ML-based imputation strategy to address gaps in property data. Leveraging this comprehensive database, we developed predictive ML models using tree-based and neural network approaches for optimizing multiple properties simultaneously.
View Article and Find Full Text PDFLow grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit.
View Article and Find Full Text PDFMagnetic high-entropy alloys (HEAs) are a new category of high-performance magnetic materials, with multicomponent concentrated compositions and complex multi-phase structures. Although there have been numerous reports of their interesting magnetic properties, there is very limited understanding about the interplay between their hierarchical multi-phase structures and the resulting magnetic behavior. We reveal for the first time the influence of a hierarchically decomposed B2 + A2 structure in an AlCoCrFeNi HEA on the formation of magnetic vortex states within individual A2 (disordered BCC) precipitates, which are distributed in an ordered B2 matrix that is weakly ferromagnetic.
View Article and Find Full Text PDFMetastable 1T'-phase transition metal dichalcogenides (1T'-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable 1T'-TMD crystals, especially for the group VIB TMDs, remains a challenge. Here, we report a general synthetic method for the large-scale preparation of metastable 1T'-phase group VIB TMDs, including WS, WSe, MoS, MoSe, WSSe and MoSSe.
View Article and Find Full Text PDFLiver cancer is an aggressive malignancy associated with high levels of mortality and morbidity. Doxorubicin (Dox) is often used to slow down liver cancer progression; however its efficacy is limited, and its severe side effects prevent its routine use at therapeutic concentrations. We present a biomimetic peptide that coacervates into micro-droplets, within which both Dox and magnetic nanoparticles (MNPs) can be sequestered.
View Article and Find Full Text PDFMagnetoelectric coupling is of high current interest because of its potential applications in multiferroic memory devices. Although magnetoelectric coupling has been widely investigated in inorganic materials, such observations in organic materials are extremely rare. Here, we report our discovery that organic charge-transfer (CT) complex pyrene-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (pyrene-FTCNQ) can display anisotropic magnetoelectric coupling.
View Article and Find Full Text PDFWe report an environmentally benign and cost-effective method to produce Fe and Co magnetic metal nanoparticles as well as the Fe/Cao and Co/CaO nanocomposites by using a novel, dry mechanochemical process. Mechanochemical milling of metal oxides with a suitable reducing agent resulted in the production of magnetic metal nanoparticles. The process involved grinding and consequent reduction of low-costing oxide powders, unlike conventional processing techniques involving metal salts or metal complexes.
View Article and Find Full Text PDFNd-Fe-B magnets, possessing the highest energy product, are extensively used in cutting-edge applications, including electrical machines and electrical vehicles. An environmentally benign and cost effective synthesis method of Cr alloyed Nd (Fe,Co) B magnetic nanoparticles using a dry mechanochemical process is reported. The method is solvent free, facile, energy efficient and scalable.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2016
Multiple exciton generation (MEG) is a promising process to improve the power conversion efficiency of solar cells. PbSe quantum dots (QDs) have shown reasonably high MEG quantum yield (QY), although the photon energy threshold for this process is still under debate. One of the reasons for this inconsistency is the complicated competition of MEG and hot exciton cooling, especially at higher excited states.
View Article and Find Full Text PDFWe have developed pH- and magnetic-responsive hydrogels that are stabilized by both covalent bonding and catechol/Fe(3+) ligands. The viscoelastic properties of the gels are regulated by the complexation valence and can be used to tune drug release profiles. The stable incorporation of magnetic nanoparticles further expands control over the mechanical response and drug release, in addition to providing magnetic stimuli-responsivity to the gels.
View Article and Find Full Text PDFUniform magnetic nanoparticle-loaded polymer nanospheres with different loading contents of manganese ferrite nanoparticles were successfully synthesized using a flexible emulsion process. The MnFeO-loaded polymer nanospheres displayed an excellent dispersibility in both water and phosphate buffer saline. The effect of loading ratio and size of MnFeO nanoparticles within the nanospheres on the specific absorption rate (SAR) under an alternating magnetic field was investigated.
View Article and Find Full Text PDFThe fabrication of a highly ordered novel ZnO/Si nano-heterojuntion array is introduced. ZnO seed layer is first deposited on the Si (P<111>) surface. The nucleation sites are then defined by patterning the surface through focused ion beam (FIB) system.
View Article and Find Full Text PDFBiological materials offer a wide range of multifunctional and structural properties that are currently not achieved in synthetic materials. Herein we report on the synthesis and preparation of bioinspired organic/inorganic composites that mimic the key physicochemical features associated with the mechanical strengthening of both squid beaks and mussel thread coatings using chitosan as an initial template. While chitosan is a well-known biocompatible material, it suffers from key drawbacks that have limited its usage in a wider range of structural biomedical applications.
View Article and Find Full Text PDFThe high coercivity and excellent energy product of Nd2Fe14B hard magnets have led to a large number of high value added industrial applications. Chemical synthesis of Nd2Fe14B nanoparticles is challenging due to the large reduction potential of Nd(3+) and the high tendency for Nd2Fe14B oxidation. We report the novel synthesis of Nd2Fe14B nanoparticles by a microwave assisted combustion process.
View Article and Find Full Text PDFMagnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, several actuation modes, high actuation strain and strain rate, self-sensing and quick response.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2010
Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles.
View Article and Find Full Text PDFBranched core/shell bismuth telluride/bismuth sulfide nanorod heterostructures are prepared by using a biomimetic surfactant, L-glutathionic acid. Trigonal nanocrystals of bismuth telluride are encapsulated by nanoscopic shells of orthorhombic bismuth sulfide. Crystallographic twinning causes shell branching.
View Article and Find Full Text PDF