Publications by authors named "Raju Namburu"

Integration schemes are implemented with a plane-wave basis in the context of real-time time-dependent density functional theory. Crank-Nicolson methods and three classes of explicit integration schemes are explored and assessed in terms of their accuracy and stability properties. Within the framework of plane-wave density functional theory, a graphene monolayer system is used to investigate the error, stability, and serial computational cost of these methods.

View Article and Find Full Text PDF

The chemical vapor deposition (CVD)-grown two-dimensional molybdenum disulfide (MoS) structures comprise of flakes of few layers with different dimensions. The top layers are relatively smaller in size than the bottom layers, resulting in the formation of edges/steps across adjacent layers. The strain response of such few-layer terraced structures is therefore likely to be different from exfoliated few-layered structures with similar dimensions without any terraces.

View Article and Find Full Text PDF

A long-standing problem in modeling of shock response of metals is the ability to model defect nucleation and evolution mechanisms during plastic deformation and failure at the mesoscales. This paper demonstrates the capability of the "quasi-coarse-grained dynamics" (QCGD) simulation method to unravel microstructural evolution of polycrystalline Al microstructures at the mesoscales. The various QCGD simulations discussed here investigate the shock response of Al microstructures comprising of grain sizes ranging from 50 nm to 3.

View Article and Find Full Text PDF

The potential of the applicability of two-dimensional molybdenum disulfide (MoS) structures, in various electronics, optoelectronics, and flexible devices requires a fundamental understanding of the effects of strain on the electronic, magnetic and optical properties. Particularly important is the recent capability to grow large flakes of few-layered structures using chemical vapor deposition (CVD) wherein the top layers are relatively smaller in size than the bottom layers, resulting in the presence of edges/steps across adjacent layers. This paper investigates the strain response of such suspended few-layered structures at the atomic scales using classic molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes.

View Article and Find Full Text PDF

In ReS2, a layer-independent direct band gap of 1.5 eV implies a potential for its use in optoelectronic applications. ReS2 crystallizes in the 1T'-structure, which leads to anisotropic physical properties and whose concomitant electronic structure might host a nontrivial topology.

View Article and Find Full Text PDF