Sugar beet is susceptible to Beet curly top virus (BCTV), which significantly reduces yield and sugar production in the semi-arid growing regions worldwide. Sources of genetic resistance to BCTV is limited and control depends upon insecticide seed treatments with neonicotinoids. Through double haploid production and genetic selection, BCTV resistant breeding lines have been developed.
View Article and Find Full Text PDFAflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers.
View Article and Find Full Text PDF(BCTV) significantly reduces sugar beet yield in semi-arid production areas. Genetic resistance to BCTV is limited; therefore, identification of additional resistance-associated factors is highly desired. Using 16S rRNA sequencing and BCTV resistant (R) genotypes (KDH13, KDH4-9) along with a susceptible (S) genotype (KDH19-17), we investigated leaf bacteriome changes during BCTV post inoculation (pi).
View Article and Find Full Text PDFSugar beet crown and root rot caused by is a major yield constraint. Root rot is highly increased when and co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in .
View Article and Find Full Text PDF(BCTV) mediated yield loss in sugar beets is a major problem worldwide. The circular single-stranded DNA virus is transmitted by the beet leafhopper. Genetic sources of BCTV resistance in sugar beet are limited and commercial cultivars rely on chemical treatments versus durable genetic resistance.
View Article and Find Full Text PDF()-mediated aflatoxin contamination in maize is a major global economic and health concern. As is an opportunistic seed pathogen, the identification of factors contributing to kernel resistance will be of great importance in the development of novel mitigation strategies. Using V3-V4 bacterial rRNA sequencing and seeds of -resistant maize breeding lines TZAR102 and MI82 and a susceptible line, SC212, we investigated kernel-specific changes in bacterial endophytes during infection.
View Article and Find Full Text PDFPolyamines (PAs) are ubiquitous polycations found in plants and other organisms that are essential for growth, development, and resistance against abiotic and biotic stresses. The role of PAs in plant disease resistance depends on the relative abundance of higher PAs [spermidine (Spd), spermine (Spm)] vs. the diamine putrescine (Put) and PA catabolism.
View Article and Find Full Text PDFAflatoxin contamination in food and feed crops is a major challenge worldwide. Aflatoxins, produced by the fungus Aspergillus flavus (A. flavus) are potent carcinogens that substantially reduce crop value in maize and other oil rich crops like peanut besides posing serious threat to human and animal health.
View Article and Find Full Text PDFAspergillus flavus can colonize important food staples and produce aflatoxins, a group of toxic and carcinogenic secondary metabolites. Previous in silico analysis of the A. flavus genome revealed 56 gene clusters predicted to be involved in the biosynthesis of secondary metabolites.
View Article and Find Full Text PDFis a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs) known as aflatoxins. Polyamines (PAs) are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis.
View Article and Find Full Text PDFis best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of these secondary metabolites have been identified from cultures, analysis of the genome has predicted the existence of at least 56 secondary metabolite gene clusters.
View Article and Find Full Text PDFExpressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin.
View Article and Find Full Text PDFBackground: Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional.
View Article and Find Full Text PDFis an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize ( L.). Pathogenesis-related (PR) proteins serve as an important defense mechanism against invading pathogens by conferring systemic acquired resistance in plants.
View Article and Find Full Text PDFHomeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox () genes in the aflatoxin-producing ascomycete, , and determined their respective role in growth, conidiation and sclerotial production.
View Article and Find Full Text PDFMycotoxin contamination in food and feed crops is a major concern worldwide. Fungal pathogens of the genera , and are a major threat to food and feed crops due to production of mycotoxins such as aflatoxins, 4-deoxynivalenol, patulin, and numerous other toxic secondary metabolites that substantially reduce the value of the crop. While host resistance genes are frequently used to introgress disease resistance into elite germplasm, either through traditional breeding or transgenic approaches, such resistance is often compromised by the evolving pathogen over time.
View Article and Find Full Text PDFThe metabolism of glutamate into ornithine, arginine, proline, and polyamines is a major network of nitrogen-metabolizing pathways in plants, which also produces intermediates like nitric oxide, and γ-aminobutyric acid (GABA) that play critical roles in plant development and stress. While the accumulations of intermediates and the products of this network depend primarily on nitrogen assimilation, the overall regulation of the interacting sub-pathways is not well understood. We tested the hypothesis that diversion of ornithine into polyamine biosynthesis (by transgenic approach) not only plays a role in regulating its own biosynthesis from glutamate but also affects arginine and proline biosynthesis.
View Article and Find Full Text PDFThe development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.
View Article and Find Full Text PDFThe physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g.
View Article and Find Full Text PDFThe effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8-10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently.
View Article and Find Full Text PDFWe overexpressed a mouse ornithine decarboxylase gene under the control of a constitutive and an estradiol-inducible promoter in Arabidopsis thaliana to increase our understanding of the regulation of polyamine metabolism. Of particular interest was the role of the substrate ornithine not only in the regulation of polyamine biosynthesis, but also in the accumulation of related amino acids in response to short-term induction of this enzyme. We hypothesized that the inducible expression of the transgene would mimic the natural responses of plants to changing conditions, e.
View Article and Find Full Text PDF