Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis.
View Article and Find Full Text PDFMitochondria are complex organelle that plays a pivotal role in energy metabolism, regulation of stress responses, and also serve as a major hub for biosynthetic processes. In addition to their well-established function in cellular energetics, it also serves as the primary site for the origin of intracellular reactive oxygen species (ROS), which function as signaling molecules and can lead to oxidative stress when generated in excess. Moreover, mitochondrial dysfunction is one of the leading cause of neuroinflammation.
View Article and Find Full Text PDFTraumatic brain injuries (TBIs) cause multifaceted disruption in the neural network, initiate huge inflammation processes, and form glial scars that result in severe damage to the brain. Thus, the treatment of TBI is a challenging task. To address this challenge, a newer and innovative approach is extremely important to develop a successful therapeutic strategy.
View Article and Find Full Text PDFAging and various neurodegenerative diseases cause significant reduction in adult neurogenesis and simultaneous increase in quiescent neural stem cells (NSCs), which impact the brain's regenerative capabilities. To deal with this challenging issue, current treatments involve stem cell transplants or prevention of neurodegeneration; however, the efficacy or success of this process remains limited. Therefore, extensive and focused investigation is highly demanding to overcome this challenging task.
View Article and Find Full Text PDFIn the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3β inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP).
View Article and Find Full Text PDFAim: Exploring the efficacy of β-carboline-based molecular inhibitors in targeting microtubules for the development of novel anticancer therapeutics.
Materials And Methods: We synthesized a series of 1-Aryl-N-substituted-β-carboline-3-carboxamide compounds and evaluated their cytotoxicity against human lung carcinoma (A549) cells using the MTT assay. Normal lung fibroblast cells (WI-38) were used to assess compound selectivity.
Bioengineered composite hydrogel platforms made of a supramolecular coassembly have recently garnered significant attention as promising biomaterial-based healthcare therapeutics. The mechanical durability of amyloids, in conjunction with the structured charged framework rendered by biologically abundant key ECM component glycosaminoglycan, enables us to design minimalistic customized biomaterial suited for stimuli responsive therapy. In this study, by harnessing the heparin sulfate-binding aptitude of amyloid fibrils, we have constructed a pH-responsive extracellular matrix (ECM) mimicking hydrogel matrix.
View Article and Find Full Text PDFThe escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants.
View Article and Find Full Text PDFAntimicrobial cationic peptides are intriguing and propitious antibiotics for the future, even against multidrug-resistant superbugs. Venoms serve as a source of cutting-edge therapeutics and innovative, unexplored medicines. In this study, a novel cationic peptide library consisting of seven sequences was designed and synthesized from the snake venom cathelicidin, batroxicidin (BatxC), with the inclusion of the FLPII motif at the N-terminus.
View Article and Find Full Text PDFThe ingrained mechanical robustness of amyloids in association with their fine-tunable physicochemical properties results in the rational design and synthesis of tailor-made biomaterials for specific applications. However, the incredible antimicrobial efficacy of these ensembles has largely been overlooked. This research work provides an insight into the interplay between self-assembly and antimicrobial activity of amyloid-derived peptide amphiphiles and thereby establishes a newfangled design principle toward the development of potent antimicrobial materials with superior wound healing efficacy.
View Article and Find Full Text PDFPolymerization of soluble amyloid beta (Aβ) peptide into protease-stable insoluble fibrillary aggregates is a critical step in the pathogenesis of Alzheimer's disease (AD). The N-terminal (NT) hydrophobic central domain fragment 16KLVFF20 plays an important role in the formation and stabilization of β-sheets by self-recognition of the parent Aβ peptide, followed by aggregation of Aβ in the AD brain. Here, we analyze the effect of the NT region inducing β-sheet formation in the Aβ peptide by a single amino acid mutation in the native Aβ peptide fragment.
View Article and Find Full Text PDFThe transdifferentiation of human mesenchymal stem cells (hMSC) to functional neurons is crucial for the development of future neuro-regenerative therapeutics. Currently, transdifferentiation of hMSCs to neurons requires a "" along with neural growth factors. The role of the individual molecules present in a "chemical cocktail" is poorly understood and may cause unwanted toxicity or adverse effects.
View Article and Find Full Text PDFAmyloid-β 42(Aβ42), an enzymatically cleaved (1-42 amino acid long) toxic peptide remnant, has long been reported to play the key role in Alzheimer's disease (AD). Aβ42 also plays the key role in the onset of other AD-related factors including hyperphosphorylation of tau protein that forms intracellular neurofibrillary tangles, imbalances in the function of the neurotransmitter acetylcholine, and even generation of reactive oxygen species (ROS), disrupting the cytoskeleton and homeostasis of the cell. To address these issues, researchers have tried to construct several strategies to target multiple aspects of the disease but failed to produce any clinically successful therapeutic molecules.
View Article and Find Full Text PDFThe formation and accumulation of amyloid beta (Aβ) peptide are considered the crucial events that are responsible for the progression of Alzheimer's disease (AD). Herein, we have designed and synthesized a series of fluorescent probes by using electron acceptor-donor end groups interacting with a π-conjugating system for the detection of Aβ aggregates. The chemical structure of these probes denoted as RMs, having a conjugated π-system (C═C), showed a maximum emission in PBS (>600 nm), which is the best range for a fluorescent imaging probe.
View Article and Find Full Text PDFBreast cancer is the most common malignancy in women and is a heterogeneous disease at molecular level. Early detection and specificity are the key prerequisite for the treatment of this deadly cancer. To address these issues attention on the breast cancer specific receptor protein(s) is the most realistic option.
View Article and Find Full Text PDFThe microtubule is regarded as the key target for designing anticancer and neurotherapeutic drugs due to its functional importance in eukaryotic cells including neurons. The microtubule is a dynamic hollow polymer tube consisting of α,β-tubulin heterodimer. Polymerization of α,β-tubulin heterodimer resulted in microtubule formation.
View Article and Find Full Text PDFIn Alzheimer's disease (AD), insoluble Aβ42 peptide fragments self-aggregate and form oligomers and fibrils in the brain, causing neurotoxicity. Further, the presence of redox-active metal ions such as Cu enhances the aggregation process through chelation with these Aβ42 aggregates as well as generation of Aβ42-mediated reactive oxygen species (ROS). Herein, we have adopted a bioinspired strategy to design and develop a multifunctional glycopeptide hybrid molecule (Glupep), which can serve as a potential AD therapeutic.
View Article and Find Full Text PDFThe sudden ravaging outbreak of a novel coronavirus, or SARS-CoV-2, in terms of virulence, severity, and casualties has already overtaken previous versions of coronaviruses, like SARS CoV and MERS CoV. Originating from its epicenter in Wuhan, China, this mutated version of the influenza virus with its associated pandemic effects has engulfed the whole world with awful speed. In the midst of this bewildering situation, medical and scientific communities are on their toes to produce the potential vaccine-mediated eradication of this virus.
View Article and Find Full Text PDF