Publications by authors named "Rajput N"

Nutritional status being the first line of defense for host plants, determines their susceptibility or resistance against invading pathogens. In recent years, the applications of plant nutrient related products have been documented as one of the best performers and considered as alternatives or/and supplements in plant disease management compared to traditional chemicals. However, knowledge about application of plant nutrient related products for the management of destructive fungal pathogen Fusarium oxysporum f.

View Article and Find Full Text PDF

Entomopathogenic fungi (EPFs) can infect and kill a diverse range of arthropods, including ticks (Acari: Ixodidae) that can transmit various diseases to animals and humans. Consequently, the use of EPFs as a biocontrol method for managing tick populations has been explored as an alternative to chemical acaricides, which may have harmful effects on the environment and non-target species. This review summarizes studies conducted on EPFs for tick control between 1998 and 2024, identifying 9 different EPF species that have been used against 15 different species of ticks.

View Article and Find Full Text PDF

Pea powdery mildew, caused by , is a major limitation to global pea production. The emergence of fungicide-resistant pathogen populations due to frequent and injudicious pesticide application highlights the importance of exploring the synergistic properties of fungicide combinations. This study investigated the efficacy of difenoconazole, thiophanate-methyl, and sulfur, both individually and in mixtures, against powdery mildew and assessed the interaction types between these fungicides.

View Article and Find Full Text PDF

Identifying general principles of brain function requires the study of structure-function relationships in a variety of species. Zebrafish have recently gained prominence as a model organism in neuroscience, yielding important insights into vertebrate brain function. Although methods have been developed for mapping neural activity in larval animals, we lack similar techniques for adult zebrafish that have the advantage of a fully developed neuroanatomy and larger behavioral repertoire.

View Article and Find Full Text PDF

Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.

View Article and Find Full Text PDF

Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS and WS prepared by chemical vapor deposition as well as their intermixing are evaluated for photodegradation (PD) of methylene blue under solar simulator irradiation. Our findings revealed that WS exhibited the highest PD efficiency of 67.

View Article and Find Full Text PDF

Brown spot of citrus caused by Alternaria citri is one of the emerging threats to the successful production of citrus crops. The present study, conducted with a substantial sample size of 50 leaf samples for statistical reliability, aimed to determine the change in mineral content in citrus leaves after brown spot disease attack. Leaf samples from a diverse range of susceptible citrus varieties (Valentia late, Washington navel, and Kinnow) and resistant varieties (Citron, Eruka lemon, and Mayer lemon) were analyzed.

View Article and Find Full Text PDF

Sugarcane smut is the most damaging disease that is present almost across the globe, causing mild to severe yield losses depending upon the cultivar types, pathogen races and climatic conditions. Cultivation of smut-resistant cultivars is the most feasible and economical option to mitigate its damages. Previous investigations revealed that there is a scarcity of information on early detection and effective strategies to suppress etiological agents of smut disease due to the characteristics overlapping within species complexes.

View Article and Find Full Text PDF

f. sp. (Foc) poses a significant position in agriculture that has a negative impact on chili plant in terms of growth, fruit quality, and yield.

View Article and Find Full Text PDF

In drug discovery, metabolite profiling unveils biotransformation pathways and potential toxicant formation, guiding selection of candidates with optimal pharmacokinetics and safety profiles. Tazemetostat (TAZ) is employed in treating locally advanced or metastatic epithelioid sarcoma. Identification of drug metabolites are of significant importance in improving safety, efficacy and reduced toxicity of drugs.

View Article and Find Full Text PDF

Background: Antiretrovirals have the potential to cause drug interactions leading to inefficacy or toxicity via induction of efflux transporters through nuclear receptors, altering drug concentrations at their target sites.

Research Design And Methods: This study used molecular dynamic simulations and qRT-PCR to investigate bictegravir's interactions with nuclear receptors PXR and CAR, and its effects on efflux transporters (P-gp, BCRP, MRP1) in rat PBMCs. PBMC/plasma drug concentrations were measured using LC-MS/MS to assess the functional impact of transporter expression.

View Article and Find Full Text PDF

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations.

View Article and Find Full Text PDF

Tung oil (TO) microcapsules (MCs) with a poly(urea-formaldehyde) (PUF) shell were synthesized via one-step in situ polymerization, with the addition of graphene nanoplatelets (GNPs) (1-5 wt. %). The synergistic effects of emulsifiers between gelatin (gel) and Tween 80 were observed, with gel chosen to formulate the MCs due to its enhanced droplet stability.

View Article and Find Full Text PDF

Importance of cleaning validation in the pharmaceutical industry cannot be overstated. It is essential for preventing cross-contamination, ensuring product quality & safety, and upholding regulatory standards. The present study involved development of an effective cleaning method for five selected kinase inhibitors binimetinib (BMT), selumetinib (SMT), brigatinib (BGT), capmatinib (CPT), and baricitinib (BRT).

View Article and Find Full Text PDF

Rationale: Enasidenib (EDB) is an orally active selective mutant isocitrate dehydrogenase-2 enzyme inhibitor approved by the U.S. Food and Drug Administration to treat acute myeloid leukemia.

View Article and Find Full Text PDF

In the present work, the Nickel oxide (rGO-NiO), Silver (rGO-Ag), Copper oxide (rGO-CuO) doped Graphene Oxide are reported for catalytic reactions. A comparative study for catalytic activities of these materials are performed with nitroaromatic compound 4-nitroaniline and the results are statistically studied by using univariate analysis of variance and Post Hoc Test through Statistical Package for Social Sciences and it is observed that CuO doped Graphene material is showing better catalytic activity in minimum time. So, further research has been focused on the catalytic acitivity of rGO-CuO only and it is found that it is efficient in reducing other nitro compounds also such as Picric acid and Nitrobenzene.

View Article and Find Full Text PDF

DK-GV-04P, chemically identified as 3-cinnamyl-2-(4-methoxyphenyl) quinazolin-4(3H)-one, is an investigational molecule synthesized at the Chemical Biology Laboratory of the National Institute of Pharmaceutical Education and Research-Ahmedabad. The compound has shown potential anticancer activity against squamous CAL27 cell lines. Metabolite identification and characterization are critical in drug discovery, providing key insights into a compound's pharmacokinetics, pharmacodynamics safety, and metabolic fate.

View Article and Find Full Text PDF

Imidazopyridine scaffold holds significant pharmacological importance in the treatment of cancer. An in-house synthesized imidazopyridine-based molecule was found to have promising anticancer activity against breast cancer, lung cancer, and colon cancer. The molecule is an inhibitor of pyruvate kinase M2, the enzyme that elevates tumor growth, metastasis and chemoresistance by directly controlling tumor cell metabolism.

View Article and Find Full Text PDF

Aiming to improve the photocatalytic properties of transition metal perovskites to be used as robust photoanodes, [LaFeO]/[SrTiO] nanocomposites (LFO/STO) are considered. This hybrid structure combines good semiconducting properties and an interesting intrinsic remanent polarization. All the studied samples were fabricated using a solid-state method followed by high-energy ball milling, and they were subsequently deposited by spray coating.

View Article and Find Full Text PDF

Selumetinib (SELU) was recently approved by the US Food and Drug Administration (US FDA) in 2020. However, the degradation impurities of SELU have not been characterized or identified to date. The mechanism for impurity formation and the degradation behavior have not been previously studied.

View Article and Find Full Text PDF

Graphene is a 2D material with promising commercial applications due to its physicochemical properties. Producing high-quality graphene economically and at large scales is currently of great interest and demand. Here, the potential of producing high-quality graphene at a large scale via water-phase exfoliation methods is investigated.

View Article and Find Full Text PDF

Duvelisib (DUV) was first approved globally in 2018. An extensive literature search revealed that the differential role of a potential degradation medium in altering the shelf-life of DUV due to its exposure during storage has not been identified till date. Moreover, its degradation impurities and degradation mechanism are not known.

View Article and Find Full Text PDF

Degradation products are the potential drug impurities that can be generated during transport and storage of pharmaceuticals. Before this study, degradation chemistry and potential degradation products of abemaciclib (ABM) were unknown. Moreover, no stability-indicating analytical method was available that can be used to analyse ABM in presence of its degradation products.

View Article and Find Full Text PDF

Practical realization of lithium-sulfur batteries requires designing optimal electrolytes with controlled dissolution of polysulfides, high ionic conductivity, and low viscosity. Computational chemistry techniques enable tuning atomistic interactions to discover electrolytes with targeted properties. Here, we introduce ComBat (Computational Database for Lithium-Sulfur Batteries), a public database of ∼2,000 quantum-chemical and molecular dynamics properties for lithium-sulfur electrolytes composed of solvents spanning 16 chemical classes.

View Article and Find Full Text PDF