In this study, cobalt titanate nanoparticles (CoTiO₃ NPs) were synthesized and applied as a photocatalyst to degrade atrazine. Scanning electron microscopic (SEM) analysis showed irregularly shaped particles prone to agglomeration, while X-ray diffraction (XRD) confirmed the formation of a rhombohedral CoTiO₃ phase with a crystallite size of 3.76 nm.
View Article and Find Full Text PDFJ Family Med Prim Care
June 2024
Context: The aim of the study was to identify and monitor the circulating strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the samples received at our center and update the existing national and international genomic surveillance data.
Introduction: SARS-CoV-2 is no exception to the basic nature of the viruses ability to change and evolve. Since its first report in December 2019 from Wuhan, China, multiple variants of the virus have emerged and been reported.
The metal intoxication and its associated adverse effects to humans have led to the research for development of water treatment technologies from pollution hazards. Therefore, development of cheaper water remediation technologies is more urgent than ever. Clays and clay minerals are naturally occurring, inexpensive, non-toxic materials possessing interesting chemical and physical properties.
View Article and Find Full Text PDFSmall RNA (sRNA) molecules, a class of non-coding RNAs, have emerged as pivotal players in the regulation of gene expression and cellular processes. and other pathogenic mycobacteria produce diverse small RNA species that modulate bacterial physiology and pathogenesis. Recent advances in RNA sequencing have enabled identification of novel small RNAs and characterization of their regulatory functions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Numerous technological advancements have been developed to tackle the issue of wastewater remediation effectively. However, the practical application of these technologies on a large scale has faced several challenges that have hindered their progress. These challenges include low selectivity, high energy requirements, and significant expenses.
View Article and Find Full Text PDFIn view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants.
View Article and Find Full Text PDFPhotocatalysed degradation of environmental contaminants is one of the most fashionable technologies in the purification of water because the method converts toxic products to nontoxic ones. In this study, a method has been developed to synthesize novel nanocomposites of Na-Ca-Al-Si oxides for the first time. The average surface area, pore volume and pore size for the novel product were 1742.
View Article and Find Full Text PDFEnviron Monit Assess
November 2023
Water pollution is a significant issue worldwide due to an increase in anthropogenic activities. Heavy metals and dyes are among the most problematic contaminants that threaten the environment and negatively impact human health. Iron oxide nanoparticles (IONPs) synthesized using green methods have shown potential in these areas due to their significant adsorption capacity and photocatalytic potential.
View Article and Find Full Text PDFThe sequestration of contaminants from wastewater, such as heavy metals, has become a major global issue. Multiple technologies have been developed to address this issue. Nanotechnology is attracting significant interest as a new technology, and numerous nanomaterials have been produced for sequestrating heavy metals from polluted water due to their superior properties arising from the nanoscale effect.
View Article and Find Full Text PDFThe present study captures the precipitation synthesis of zinc nanoparticles and modification with alumina and oleic acid. The crystalline size evaluated from the XRD profile of the zinc oxide nanoparticles was 18.05 nm but was reduced to 14.
View Article and Find Full Text PDFContamination of water resources by industrial effluents containing heavy metal ions and management of solid waste from agricultural and food industries is a serious issue. This study presents the valorization of waste walnut shells as an effective and environment-friendly biosorbent for sequestrating Cr(VI) from aqueous media. The native walnut shell powder (NWP) was chemically modified with alkali (AWP) and citric acid (CWP) to obtain modified biosorbents with abundant availability of pores as active centers, as confirmed by BET analysis.
View Article and Find Full Text PDFThe present study was designed to synthesize and characterize calcium oxide nanoparticles (using mangrove oyster shell as a precursor) and apply the synthesized nanoparticles as a photocatalyst to degrade procaine penicillin in an aqueous solution. The photocatalyst exhibited an average band gap of 4.42 eV, showed a maximum wavelength of absorbance in the UV region (i.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2023
Heavy metals present in industrial effluents, when discharged into water channels, not only affect humans but also negatively impact plants and aquatic organisms. Sawdust is available readily in developing countries and can be used by small-scale industries for effluent water treatment containing low concentrations of bivalent zinc ions. This study explores the potential of sawdust-derived biosorbents, after boiling (SDB), chemical modification with formaldehyde (SDF), and sulfuric acid (SDS), for sequestration of Zn(II) from simulated wastewater as well as industrial effluents.
View Article and Find Full Text PDFThe development of technologies for the removal of dye from aqueous solution is most desirable if the end product is relatively green (i.e., environmentally friendly).
View Article and Find Full Text PDFNanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications.
View Article and Find Full Text PDFThis study deals with heavy metal ions removal from simulated water using biosynthesized silica-supported iron oxide nanocomposites (nano-IOS). Agricultural and garden wastes have been utilized to prepare nano-IOS through a green synthesis process. Nano-IOS was characterized by XRD, SEM, FTIR, and zeta potential analysis.
View Article and Find Full Text PDFThe corrosion of metals, i.e., the initiation and acceleration of the surface deterioration of metals through an electrochemical reaction with the surrounding intrusive environment, is a global concern because of the economic and environmental impacts.
View Article and Find Full Text PDFIndustrial effluents generally contain several metals, so during adsorptive treatment, they may influence the removal of each other. It is essential to explore the effect of co-cations on metal removal in multi-metal solutions. The present study examined the possibility of processed rice husk and saw dust to remove Cr, Ni, Cu, Cd and Zn, from the single, binary and multi-component aqueous solutions.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2021
Diabetes mellitus (DM) is an important lifestyle disease. Type 2 diabetes is one of the prime contributors to cardiovascular diseases (CVD) and diabetic cardiomyopathy (DbCM) and leads to increased morbidity and mortality in patients with DM. DbCM is a typical cardiac disease, characterized by cardiac remodeling in the presence of DM and in the absence of other comorbidities such as hypertension, valvular diseases, and coronary artery disease.
View Article and Find Full Text PDFNanomaterials have garnered the significant interest of scientists owing to their technological as well as medical applications. In particular, metal and metal oxide nanoparticles have gained prominence because of their enhanced performance as compared to their bulk counterparts. Metal-supported nanomaterials are anticipated to make major contributions to solving today's most challenging issues, like energy harvesting and environmental remediation.
View Article and Find Full Text PDFRv3852 is a unique nucleoid-associated protein (NAP) found exclusively in (Mtb) and closely related species. Although annotated as H-NS, we showed previously that it is very different from H-NS in its properties and is distinct from other NAPs, anchoring to cell membrane by virtue of possessing a C-terminal transmembrane helix. Here, we investigated the role of Rv3852 in Mtb in organizing architecture or synthesis machinery of cell wall by protein-protein interaction approach.
View Article and Find Full Text PDFNanoparticles (NPs) have become an important field of research over the past several decades with applications in various sectors, such as biomedical, cosmetic, food and many others, because of their unique characteristics. The green synthesis of nanoparticles has been preferred because of the naturally occurring reductants present in biological systems that decreases exposure to toxic chemicals compared with physico-chemical methods and is eco-friendly. Zinc oxide (ZnO) NPs exhibit broad and potential applications in different fields with their specific characteristics such as surface area, size, shape, low toxicity, optical properties, high binding energy and large band gap.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Calcium is a very important second messenger, whose concentration in various cellular compartments is under tight regulation. A disturbance in the levels of calcium in these compartments can play havoc in the cell, as it regulates various cellular processes by direct or indirect mechanisms. Here, we have investigated the functional importance of a calcium transporting P2A ATPase, CtpF of (Mtb) in the pathogen's interaction with the host.
View Article and Find Full Text PDFMed Microbiol Immunol
April 2019