Publications by authors named "Rajkumar Kubendran"

Deoxyribonucleic acid (DNA) has emerged as a promising building block for next-generation ultra-high density storage devices. Although DNA has high durability and extremely high density in nature, its potential as the basis of storage devices is currently hindered by limitations such as expensive and complex fabrication processes and time-consuming read-write operations. In this article, we propose the use of a DNA crossbar array architecture for an electrically readable read-only memory (DNA-ROM).

View Article and Find Full Text PDF

Objective measurement of gaze pattern and eye movement during untethered activity has important applications for neuroscience research and neurological disease detection. Current commercial eye-tracking tools rely on desk-top devices with infrared emitters and conventional frame-based cameras. Although wearable options do exist, the large power-consumption from their conventional cameras limit true long-term mobile usage.

View Article and Find Full Text PDF

Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy.

View Article and Find Full Text PDF

A miniaturized, fully integrated wireless power receiver system-on-chip with embedded 16-channel electrode array and data transceiver for electrocortical neural recording and stimulation is presented. An H-tree power and signal distribution network throughout the SoC maintains high quality factor up to 11 in the on-chip receiver coil at 144 MHz resonant frequency while rejecting RF interference in sensitive neural interface circuits owing to its perpendicular and equidistant geometry. A multi-mode buck-boost resonant regulating rectifier (B R ) offers greater than 11-dB input dynamic range in RF reception and less than 1 mV overshoot in transient load regulation.

View Article and Find Full Text PDF

Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock.

View Article and Find Full Text PDF

Wireless powering holds immense promise to enable a variety of implantable biomedical measurement systems with different power supply and current budget requirements. Effective power management demands more functionality in the headstage design like power level detection for range estimation and power save modes for sleep-wake operation. This paper proposes a single chip ASIC solution that addresses these problems by incorporating digitally programmable features and thus has the potential to enable wireless powering for many implantable systems.

View Article and Find Full Text PDF