The usage of histology to investigate immune cell diversity in tissue sections such as those derived from the central nervous system (CNS) is critically limited by the number of fluorescent parameters that can be imaged at a single time. Most immune cell subsets have been defined using flow cytometry by using complex combinations of protein markers, often requiring four or more parameters to conclusively identify, which is beyond the capabilities of most conventional microscopes. As flow cytometry dissociates tissues and loses spatial information, there is a need for techniques that can retain spatial information while interrogating the roles of complex cell types.
View Article and Find Full Text PDFThe extracellular matrix (ECM) of the central nervous system (CNS) is an interconnected network of proteins and sugars with critical roles in both homeostasis and disease. In neurological diseases, excessive ECM deposition and remodeling impact both injury and repair. CNS lesions of multiple sclerosis (MS), a chronic inflammatory and degenerative disease, cause prominent alterations of the ECM.
View Article and Find Full Text PDFOxidative stress promotes tissue injury in the central nervous system in neurological disorders such as multiple sclerosis (MS). To protect against this, antioxidant enzymes including superoxide dismutase-1 (SOD1), heme oxygenase-1 (HO-1), peroxiredoxin-5 (PRDX5) and glutathione peroxidase-4 (GPX4) may be upregulated. However, whether antioxidant enzyme elevation in mouse models of neurodegeneration corresponds to their expression in human diseases such as MS requires investigation.
View Article and Find Full Text PDFNat Rev Immunol
August 2022
B cells represent a relatively minor cell population within both the healthy and diseased central nervous system (CNS), yet they can have profound effects. This is emphasized in multiple sclerosis, in which B cell-depleting therapies are arguably the most efficacious treatment for the condition. In this Review, we discuss how B cells enter and persist in the CNS and how, in many neurological conditions, B cells concentrate within CNS barriers but are rarely found in the parenchyma.
View Article and Find Full Text PDFB cell fate decisions within a germinal center (GC) are critical to determining the outcome of the immune response to a given antigen. Here, we characterize GC kinetics and B cell fate choices in a response to the autoantigen myelin oligodendrocyte glycoprotein (MOG) and compare the response with a standard model foreign antigen. Both antigens generate productive primary responses, as evidenced by GC development, circulating antigen-specific antibodies, and differentiation of memory B cells.
View Article and Find Full Text PDFThere is mounting scientific evidence showing the importance of innate biological rhythms on disease onset and progression. Perhaps the most important of these is the circadian rhythm, a cycle of oscillations lasting approximately 24 h. Recent work has shown that circadian rhythms are intrinsically linked to the immune system in a bidirectional fashion, and that disruption of these cycles can contribute to changes in pathology and quality of life (including fatigue, mood, and disability).
View Article and Find Full Text PDFWe characterized B cell infiltration of the spinal cord in a B cell-dependent spontaneous model of central nervous system (CNS) autoimmunity that develops in a proportion of mice with mutant T and B cell receptors specific for myelin oligodendrocyte glycoprotein. We found that, while males are more likely to develop disease, females are more likely to have a chronic rather than monophasic disease course. B cell infiltration of the spinal cord was investigated by histology and FACs.
View Article and Find Full Text PDFWe develop a new fusion protein reagent (MOGtag), based on the extracellular domain of mouse myelin oligodendrocyte glycoprotein (MOG1-125), designed to induce autoimmune responses in mice that incorporates both T and B cell recognition of antigen. Reports of similar reagents, primarily based on foreign MOG proteins, rely largely on disease incidence and severity, with little analysis of the underlying immune response or pathology. We characterize the immune response and central nervous system autoimmune disease elicited by MOGtag in mice and find that it results in the formation of a T cell-dependent germinal center B cell response.
View Article and Find Full Text PDF