Publications by authors named "Rajiv Ranjan Srivastava"

The incineration fly ash (IFA) resulting from municipal solid waste combustion is laden with heavy metals, necessitating proper treatment not only for environmental management but also to reclaim the metal values. The surge in non-traditional metals like cobalt as emerging contaminant within IFA samples further attracts to address this issue. In response, the hydrometallurgical recycling of a cobalt-bearing IFA has been studied.

View Article and Find Full Text PDF

This study presents a novel recycling scheme for spent Li-ion batteries that involves the leaching of lithium in hot water followed by the dissolution of all transition metals in HCl solution and their separation using the ionic liquid Cyphos IL104. The parametric studies revealed that >84 % Li was dissolved while the cathode material was leached at 90 °C for 2 h. Approximately 98 % Li from the non-acidic solution was directly precipitated as LiCO at a Li:CO ratio of 1:1.

View Article and Find Full Text PDF

The present study dealt with the restricted microbial tolerance for lead and tin during bioleaching of waste printed circuit boards (WPCBs) and lower extraction yields of valuable metals. Pretreatment of WPCBs in 4.0 mol/L HNO at 90 °C for 180 min duration prominently dissolved the toxicant metals before the microbial mobilization of valuable metals.

View Article and Find Full Text PDF

An innovative process integration for the sustainable recovery of critical metals from waste printed circuit boards (WPCBs) is demonstrated. In the acid pre-treatment of WPCBs, > 95% of highly toxic metals lead and tin could dissolve after 240 min of contact in 4.0 mol L HNO.

View Article and Find Full Text PDF

The isolation wards, institutional quarantine centers, and home quarantine are generating a huge amount of bio-medical waste (BMW) worldwide since the outbreak of novel coronavirus disease-2019 (COVID-19). The personal protective equipment, testing kits, surgical facemasks, and nitrile gloves are the major contributors to waste volume. Discharge of a new category of BMW (COVID-waste) is of great global concern to public health and environmental sustainability if handled inappropriately.

View Article and Find Full Text PDF