IEEE Trans Image Process
May 2010
Effective and efficient representation of color features of multiple video frames or pictures is an important yet challenging task for visual information management systems. Key frame-based methods to represent the color features of a group of frames (GoF) are highly dependent on the selection criterion of the representative frame(s), and may lead to unreliable results. We present various histogram-based color descriptors to reliably capture and represent the color properties of multiple images or a GoF.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2010
This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units (AU). Likewise, object-to-object interactions are decomposed into a hierarchy of low-level elementary reaction units (ERU) and high-level interaction units (IU).
View Article and Find Full Text PDFWe propose a fully automatic and computationally efficient framework for analysis and summarization of soccer videos using cinematic and object-based features. The proposed framework includes some novel low-level processing algorithms, such as dominant color region detection, robust shot boundary detection, and shot classification, as well as some higher-level algorithms for goal detection, referee detection, and penalty-box detection. The system can output three types of summaries: i) all slow-motion segments in a game; ii) all goals in a game; iii) slow-motion segments classified according to object-based features.
View Article and Find Full Text PDF