The performance of a bioreactor landfill is highly influenced by the simultaneous interactions of several coupled processes that occur within the landfill. In addition, the high uncertainty and spatial variability in the geotechnical properties of municipal solid waste (MSW) poses significant challenge in accurately predicting the performance of bioreactor landfills. In this study, a 2D coupled hydro-bio-mechanical (CHBM) model was employed to predict the behavior of MSW in bioreactor landfills.
View Article and Find Full Text PDFA two-dimensional (2-D) mathematical model is presented to predict the response of municipal solid waste (MSW) of conventional as well as bioreactor landfills undergoing coupled hydro-bio-mechanical processes. The newly developed and validated 2-D coupled mathematical modeling framework combines and simultaneously solves a two-phase flow model based on the unsaturated Richard's equation, a plain-strain formulation of Mohr-Coulomb mechanical model and first-order decay kinetics biodegradation model. The performance of both conventional and bioreactor landfill was investigated holistically, by evaluating the mechanical settlement, extent of waste degradation with subsequent changes in geotechnical properties, landfill slope stability, and in-plane shear behavior (shear stress-displacement) of composite liner system and final cover system.
View Article and Find Full Text PDFIn bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system.
View Article and Find Full Text PDFThe extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
June 2007
In the present study, we report a systematic study of doping/admixing of carbon nanotubes (CNTs) in different concentrations in MgB2. The composite material corresponding to MgB2-x at.% CNTs (35 at.
View Article and Find Full Text PDF