Publications by authors named "Rajinikanth P"

Human epidermal growth factor receptor-2 (HER2)-positive breast cancer metastasis remains the primary cause of mortality among women globally. Targeted therapies have revolutionized treatment efficacy, with Trastuzumab (Trast), a monoclonal antibody, targeting HER2-positive advanced breast cancer. The tumor-homing peptide iRGD enhances the intratumoral accumulation and penetration of therapeutic agents.

View Article and Find Full Text PDF

Breast cancer (BC) is a leading global concern for women, with 30% being HER2-positive cases linked to poorer outcomes. Targeted therapies like trastuzumab deruxtecan (T-DXd), trastuzumab, pertuzumab, and T-DM1 have revolutionized HER2-positive metastatic breast cancer (MBC) treatment. Although these therapies have improved MBC management and patient outcomes, resistance can develop, reducing effectiveness.

View Article and Find Full Text PDF

The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes to deliver drugs effectively. pH-responsive liposomes that are internalized through endocytosis encounter mildly acidic pH in the endosomes and thereafter fuse or destabilize the endosomal membrane, leading to subsequent cargo release into the cytoplasm.

View Article and Find Full Text PDF
Article Synopsis
  • * Leukodystrophies are rare, inherited neurodegenerative conditions primarily affecting the myelin sheath, leading to dysfunction in astrocytes, oligodendrocytes, and microglia.
  • * Promising therapeutic strategies, including stem cell therapy and gene therapy, are being researched for treating leukodystrophies, aiming to restore myelin and correct metabolic issues linked to glial cell impairment.
View Article and Find Full Text PDF

Background: The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries.

Methods: This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair.

View Article and Find Full Text PDF

Osteogenic-osteoclast coupling processes play a crucial role in bone regeneration. Recently, strategies that focus on multi-functionalized implant surfaces to enhance the healing of bone defects through the synergistic regulation of osteogenesis and osteoclastogenesis is still a challenging task in the field of bone tissue engineering. The aim of this study was to create a dual-drug release-based core-shell nanofibers with the intent of achieving a time-controlled release to facilitate bone regeneration.

View Article and Find Full Text PDF

Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. β-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer.

View Article and Find Full Text PDF

Zein, a protein-based biopolymer derived from corn, has garnered attention as a promising and eco-friendly choice for packaging food due to its favorable physical attributes. The introduction of electrospinning technology has significantly advanced the production of zein-based nanomaterials. This cutting-edge technique enables the creation of nanofibers with customizable structures, offering high surface area and adjustable mechanical and thermal attributes.

View Article and Find Full Text PDF

Background: Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment.

View Article and Find Full Text PDF

Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity.

View Article and Find Full Text PDF

Electrospinning is a versatile method for fabrication of précised nanofibrous materials for various biomedical application including tissue engineering and drug delivery. This research is aimed to fabricate the PVP/PVA nanofiber scaffold by novel electrospinning technique and to investigate the impact of process parameters (flow rate, voltage and distance) and polymer concentration/solvent combinations influence on properties of electrospun nanofibers. The and degradation studies were performed to evaluate the potential of electrospun PVP/PVA as a tissue engineering scaffold.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on creating PVP and PVA nanofiber composite scaffolds enhanced with hydroxyapatite (HA) nanoparticles and alendronate (ALN) for bone and tissue regeneration using electrospinning techniques.
  • Analysis, including SEM and EDX, confirmed successful incorporation of HA and ALN, with nanofiber diameters around 200-250 nm, showcasing the materials' physicochemical stability and compatibility.
  • The findings highlight the non-toxic, biocompatible nature of the scaffolds and their potential to promote bone growth and inhibit harmful osteoclast activity, suggesting significant applications in bone regeneration therapy.
View Article and Find Full Text PDF

Diabetes adversely affects wound-healing responses, leading to the development of chronic infected wounds. Such wound microenvironment is characterized by hyperglycaemia, hyperinflammation, hypoxia, variable pH, upregulation of matrix metalloproteinases, oxidative stress, and bacterial colonization. These pathological conditions pose challenges for the effective wound healing.

View Article and Find Full Text PDF

All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells.

View Article and Find Full Text PDF

Current anticancer drug research includes tumor-targeted administration as a critical component because it is the best strategy to boost efficacy and decrease toxicity. Low drug concentration in cancer cells, nonspecific distribution, rapid clearance, multiple drug resistance, severe side effects, and other factors contribute to the disappointing results of traditional chemotherapy. As an innovative technique of treatments for hepatocellular carcinoma (HCC) in recent years, nanocarrier-mediated targeted drug delivery systems can overcome the aforesaid limitations via enhanced permeability and retention effect (EPR) and active targeting.

View Article and Find Full Text PDF

Electrospun nanofibers scaffolds show promising potential in wound healing applications. This work aims to fabricate nanofibrous wound dressing as a novel approach for a topical drug delivery system. Herein, the electrospinning technique is used to design and fabricate bioabsorbable nanofibrous scaffolds of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with thrombin (TMB) as hemostatic agent and vancomycin (VCM) as anti-bacterial agent for a multifunctional platform to control excessive blood loss, inhibit bacterial growth and enhance wound healing.

View Article and Find Full Text PDF

The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.

View Article and Find Full Text PDF

Psoriasis is an autoimmune skin disease that generally affects 1%-3% of the total population globally. Effective treatment of psoriasis is limited because of numerous factors, such as ineffective drug delivery and efficacy following conventional pharmaceutical treatments. Nanofibers are widely being used as nanocarriers for effective treatment because of their multifunctional and distinctive properties, including a greater surface area, higher volume ratio, increased elasticity and improved stiffness and resistance to traction, favorable biodegradability, high permeability, and sufficient oxygen supply, which help maintain the moisture content of the skin and improve the bioavailability of the drugs.

View Article and Find Full Text PDF

Introduction: Foot ulceration is one of the most severe and debilitating complications of diabetes, which leads to the cause of non-traumatic lower-extremity amputation in 15-24% of affected individuals. The healing of diabetic foot (DF) is a significant therapeutic problem due to complications from the multifactorial healing process. Electrospun nanofibrous scaffold loaded with various wound dressing materials has excellent wound healing properties due to its multifunctional action.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common malignancy which affects a substantial number of individuals all over the globe. It is the third primary cause of death among persons with neoplasm and has the fifth largest mortality rate among men and the seventh highest mortality rate among women. Dalbergin (DL) is described to be effective in breast cancer changing mRNA levels of apoptosis-related proteins.

View Article and Find Full Text PDF

Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity.

View Article and Find Full Text PDF

Breast cancer (BC) is the second most common cancer in women, with a high morbidity rate. The human epidermal growth factor receptor HER2 is a growth-promoting protein that is overexpressed in 15-20% of breast cancers (HER2+ BCs) and is often associated with clinically aggressive disease. Targeting this oncogene has resulted in significant improvements in survival outcomes for HER2+ BC patients.

View Article and Find Full Text PDF

Diabetic foot ulceration is the most distressing complication of diabetes having no standard therapy. Nanofibers are an emerging and versatile nanotechnology-based drug-delivery system with unique wound-healing properties. This study aimed to prepare and evaluate silk-sericin based hybrid nanofibrous mats for diabetic foot ulcer.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease with a high mortality rate and many complications. A non-healing diabetic foot ulcer (DFU) is one the most serious complications, leading to lower-extremity amputation in 15% of diabetic patients. Nanofibers are emerging as versatile wound dressing due to their unique wound healing properties, such as a high surface area to volume ratio, porosity, and ability to maintain a moist wound environment capable of delivering sustained drug release and oxygen supply to a wound.

View Article and Find Full Text PDF