Publications by authors named "Rajic Z"

As the resistance of to the existing antimalarials increases, there is a crucial need to expand the antimalarial drug pipeline. We recently identified potent antimalarial compounds, namely harmiquins, hybrids derived from the β-carboline alkaloid harmine and 4-amino-7-chloroquinoline, a key structural motif of chloroquine (CQ). To further explore the structure-activity relationship, we synthesised 13 novel hybrid compounds at the position -9 of the β-carboline ring and evaluated their efficacy in vitro against 3D7 and Dd2 strains (CQ sensitive and multi-drug resistant, respectively).

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research.

View Article and Find Full Text PDF

The poor prognosis of glioblastoma multiforme, inadequate treatment options, and growing drug resistance urge the need to find new effective agents. Due to the significant anti-cancer potential of harmicens, hybrid compounds which comprise harmine/β-carboline and ferrocene moiety, we investigated their antiglioblastoma potential and mechanism of action (inhibition of DYRK1A, Hsp90, anti-oxidative activity). The results have shown that triazole-type harmicens, namely , with a ferrocene moiety in C-3 position of the β-carboline ring ( = 3.

View Article and Find Full Text PDF

Newly synthesized 7-chloro-4-aminoquinoline-benzimidazole hybrids were characterized by NMR and elemental analysis. Compounds were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts) and carcinoma (HeLa and CaCo-2), leukemia, and lymphoma (Hut78, THP-1, and HL-60) cell lines. The obtained results, expressed as the concentration at which 50% inhibition of cell growth is achieved (IC value), show that the tested compounds affect cell growth differently depending on the cell line and the applied dose (IC ranged from 0.

View Article and Find Full Text PDF

The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer.

View Article and Find Full Text PDF

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the β-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea.

View Article and Find Full Text PDF

Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and β-carboline alkaloid harmine against cancer cell lines and . The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. evaluation of the biological activity of the title compounds revealed two hit compounds.

View Article and Find Full Text PDF

Malaria, one of the oldest parasitic diseases, remains a global health threat, and the increasing resistance of the malaria parasite to current antimalarials is forcing the discovery of new, effective drugs. Harmicines, hybrid compounds in which harmine/β-carboline alkaloids and cinnamic acid derivatives are linked via an amide bond or a triazole ring, represent new antiplasmodial agents. In this work, we used a multiple linear regression technique to build a linear quantitative structure-activity relationship (QSAR) model, based on a group of 40 previously prepared amide-type (AT) harmicines and their antiplasmodial activities against erythrocytic stage of chloroquine-sensitive strain of P.

View Article and Find Full Text PDF

Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS ( quinolone signal)-dependent quorum sensing (QS) of that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole.

View Article and Find Full Text PDF

Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/β-carboline and ferrocene scaffolds.

View Article and Find Full Text PDF

Malaria remains one of the major health problems worldwide. The lack of an effective vaccine and the increasing resistance of Plasmodium to the approved antimalarial drugs demands the development of novel antiplasmodial agents that can effectively prevent and/or treat this disease. Harmiquins represent hybrids that combine two moieties with different mechanisms of antiplasmodial activity in one molecule, i.

View Article and Find Full Text PDF

As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide-alkyne cycloaddition, leading to the formation of the 1-1,2,3-triazole ring.

View Article and Find Full Text PDF

The rise of the resistance of the malaria parasite to the currently approved therapy urges the discovery and development of new efficient agents. Previously we have demonstrated that harmicines, hybrid compounds composed from β-carboline alkaloid harmine and cinnamic acid derivatives, linked via either triazole or amide bond, exert significant antiplasmodial activity. In this paper, we report synthesis, antiplasmodial activity and cytotoxicity of expanded series of novel triazole- and amide-type harmicines.

View Article and Find Full Text PDF

Harmicines represent hybrid compounds composed of β-carboline alkaloid harmine and cinnamic acid derivatives (CADs). In this paper we report the synthesis of amide-type harmicines and the evaluation of their biological activity. -harmicines - and -harmicines - were prepared by a straightforward synthetic procedure, from harmine-based amines and CADs using standard coupling conditions, 1-[bis(dimethylamino)methylene]-1-1,2,3-triazolo [4,5-]pyridinium 3-oxid hexafluorophosphate (HATU) and ,-diisopropylethylamine (DIEA).

View Article and Find Full Text PDF

Harmicines constitute novel hybrid compounds that combine two agents with reported antiplasmodial properties, namely β-carboline harmine and a cinnamic acid derivative (CAD). Cu(I) catalyzed azide-alkyne cycloaddition was employed for the preparation of three classes of hybrid molecules: N-harmicines 6a-i, O-harmicines 7a-i and N,O-bis-harmicines 8a-g,i. In vitro antiplasmodial activities of harmicines against the erythrocytic stage of Plasmodium falciparum (chloroquine-sensitive Pf3D7 and chloroquine-resistant PfDd2 strains) and hepatic stage of P.

View Article and Find Full Text PDF

Four classes of aminoquinoline derivatives were prepared: primaquine ureas 1a-f, primaquine bis-ureas 2a-f, chloroquine fumardiamides 3a-f and mefloquine fumardiamides 4a-f. Their antiproliferative activities against breast adeno-carcinoma (MCF-7), lung carcinoma (H460) and colon carcinoma (HCT 116 and SW620) cell lines were evaluated in vitro, using MTT cell proliferation assay. The results revealed a low activity of primaquine urea and bis-urea derivatives and high activity of all fumardiamides, with IC50 values in low micromolar range against all tested cancer cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses modifications of primaquine, a well-known antimalarial drug, aiming to improve its bioavailability, reduce toxicity, and extend its effectiveness.
  • Modifications focused on the quinoline ring and amino groups to avoid the creation of inactive toxic metabolites and repurpose compounds for different activities.
  • The review highlights various classes of primaquine N-derivatives developed in the last decade, summarizing their synthesis and assessing their potential for creating new antiplasmodial, anticancer, antimycobacterial, and antibiofilm agents.
View Article and Find Full Text PDF

Primaquine homodimers, e.g. symmetric PQ-diamides of dicarboxylic acids containing 4 to 8 carbon atoms, were evaluated against Plasmodium berghei hepatic stages and P.

View Article and Find Full Text PDF

This paper describes a continuation of our efforts in the pursuit of novel antiplasmodial agents with optimized properties. Following our previous discovery of biologically potent asymmetric primaquine (PQ) and halogenaniline fumardiamides (-), we now report their significant in vitro activity against the hepatic stages of parasites. Furthermore, we successfully prepared chloroquine (CQ) analogue derivatives (-) and evaluated their activity against both the hepatic and erythrocytic stages of .

View Article and Find Full Text PDF

The paper is focused on the synthesis and screening of the antiplasmodial activity of novel fumardiamides 5-10 with the mefloquine pharmacophore and a Michael acceptor motif. Multi-step reactions leading to the title compounds included two amide bond formations. The first amide bond was achieved by the reaction of (E)-ethyl 4-chloro-4-oxobut-2-enoate (1) and N1-(2,8-bis(trifluoromethyl)quinolin-4-yl) butane-1,4-diamine (2).

View Article and Find Full Text PDF

Here, we describe design and synthesis of twelve novel compounds bearing primaquine motif and hydroxy- or halogenamine linked by an urea or bis-urea spacer. Preparation of ureas 3a-f started with the conversion of primaquine to benzotriazolide 2 and aminolysis of the later compound by 4-(2-aminoethyl)phenol or amino alcohols bearing fluorine atom, cycloalkyl or trifluoromethyl group under microwave irradiation. The four-step sequence leading to bis-ureas 6a-f included preparation of benzotriazolide 2 and two intermediates, semicarbazide 4 and benzotriazole bis-urea 5, which upon aminolysis with the same aminophenol or amino alcohols gave the title compounds.

View Article and Find Full Text PDF

Glioblastoma multiforme is one of the most aggressive brain tumors and current therapies with temozolomide or suberoylanilide hydroxamic acid (SAHA, vorinostat) show considerable limitations. SAHA is a histone deacetylase (HDAC) inhibitor that can cause undesirable side effects due to the lack of selectivity. We show here properties of a novel hybrid molecule, sahaquine, which selectively inhibits cytoplasmic HDAC6 at nanomolar concentrations without markedly suppressing class I HDACs.

View Article and Find Full Text PDF

We report the synthesis of SAHAquines and related primaquine (PQ) derivatives. SAHAquines are novel hybrid compounds that combine moieties of suberoylanilide hydroxamic acid (SAHA), an anticancer agent with weak antiplasmodial activity, and PQ, an antimalarial drug with low antiproliferative activity. The preparation of SAHAquines is simple, cheap, and high yielding.

View Article and Find Full Text PDF

Novel primaquine (PQ) and halogenaniline asymmetric fumardiamides ⁻, potential Michael acceptors, and their reduced analogues succindiamides ⁻ were prepared by simple three-step reactions: coupling reaction between PQ and mono-ethyl fumarate () or mono-methyl succinate (), hydrolysis of PQ-dicarboxylic acid mono-ester conjugates , to corresponding acids ,, and a coupling reaction with halogenanilines. 1-[bis(Dimethylamino)methylene]-1-1,2,3-triazolo[4,5-]pyridinium 3-oxide hexafluorophosphate (HATU) was used as a coupling reagent along with Hünig's base. Compounds and were evaluated against a panel of bacteria, several strains, fungi, a set of viruses, and nine different human tumor cell lines.

View Article and Find Full Text PDF

We disclose here the studies that preceded and guided the preparation of the metal-based, redox-active therapeutic Mn(III) meso-tetrakis(N-n-butoxyethylpyridyl)porphyrin, MnTnBuOE-2-PyP (BMX-001), which is currently in Phase I/II Clinical Trials at Duke University (USA) as a radioprotector of normal tissues in cancer patients. N-substituted pyridylporphyrins are ligands for Mn(III) complexes that are among the most potent superoxide dismutase mimics thus far synthesized. To advance their design, thereby improving their physical and chemical properties and bioavailability/toxicity profiles, we undertook a systematic study on placing oxygen atoms into N-alkylpyridyl chains via alkoxyalkylation reaction.

View Article and Find Full Text PDF