Contorted polycyclic aromatic hydrocarbons (PAHs), and , bearing peripheral five-membered rings were synthesized employing a palladium-catalyzed cyclopentannulation reaction using specially designed diaryl acetylene synthons and with commercially available dibromo- anthracene and bianthracene derivatives. The resulting target compounds and were isolated in excellent yield and found to be highly soluble in common organic solvents, which allowed for their structural characterization and investigation of the photophysical properties, disclosing their aggregation-induced emission (AIE) properties in THF at selective concentration ranges of water fractions in the solvent mixture. Examination of the contorted PAH structures by means of density functional theory (DFT) revealed higher electronic conjugation in the more rigid and planar anthracene-containing derivatives when compared to the twisted bianthracene-bearing moieties with HOMO-LUMO bandgaps (Δ) of ∼2.
View Article and Find Full Text PDFFollowing an overview of the approaches and techniques used to acheive super-resolution microscopy, this review presents the advantages supplied by nanoparticle based probes for these applications. The various clases of nanoparticles that have been developed toward these goals are then critically described and these discussions are illustrated with a variety of examples from the recent literature.
View Article and Find Full Text PDFControlled and efficient activation is the crucial aspect of designing an effective prodrug. Herein we demonstrate a proof of concept for a light activatable prodrug with desired organelle specificity. Mertansine, a benzoansamacrolide, is an efficient microtubule-targeting compound that binds at or near the vinblastine-binding site in the mitochondrial region to induce mitotic arrest and cell death through apoptosis.
View Article and Find Full Text PDFLeishmaniasis, a vector-borne disease, is caused by intracellular parasite . Unlike most intracellular pathogens, are lodged in parasitophorous vacuoles and replicate within the phagolysosomes in macrophages. Effective vaccines against this disease are still under development, while the efficacy of the available drugs is being questioned owing to the toxicity for nonspecific distribution in human physiology and the reported drug-resistance developed by .
View Article and Find Full Text PDFIt is known that reactive oxygen (ROS) and nitrogen (RNS) species play a diverse role in various biological processes, such as inflammation, signal transduction, and neurodegenerative injury, apart from causing various diseases caused by oxidative and nitrosative stresses, respectively, by ROS and RNS. Thus, it is very important to quantify the concentration level of ROS and RNS in live cells, tissues, and organisms. Various small-molecule-based fluorescent/chemodosimetric probes are reported to quantify and map the effective distribution of ROS/RNS under in vitro/in vivo conditions with a great spatial and temporal resolution.
View Article and Find Full Text PDFAll cellular processes are the results of synchronized actions of several intracellular biochemical pathways. Recent emphasis is to visualize such pathways using appropriate small molecular reagents, dye-labeled proteins, and genetically encoded fluorescent biosensors that produce a luminescence ON response either on selective binding or on reacting with an analyte that is produced through a specific biochemical/enzymatic transformation. Studying such enzymatic processes by probing the fluorescence response as the read-out signal is expected to provide important insights into crucial biochemical transformations induced by an enzyme in its native form.
View Article and Find Full Text PDF