Publications by authors named "Rajeshwari Chellappan"

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB.

View Article and Find Full Text PDF

While rare, coronary stent infections present with significant mortality-with most infections and further complications occurring within months of percutaneous coronary intervention (PCI). Here, we discuss a post-COVID-19 patient who presented approximately one year after PCI for declotting of an arteriovenous graft (AVG). Upon admission, the patient was found to be bacteremic with multilobar pneumonia and an infection of the AVG.

View Article and Find Full Text PDF

The transforming growth factor receptor III (TβRIII) is commonly recognized as a co-receptor that promotes the binding of TGFβ family ligands to type I and type II receptors. Within the immune system, TβRIII regulates T cell development in the thymus and is differentially expressed through activation; however, its function in mature T cells is unclear. To begin addressing this question, we developed a conditional knock-out mouse with restricted TβRIII deletion in mature T cells, necessary because genomic deletion of TβRIII results in perinatal mortality.

View Article and Find Full Text PDF

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB.

View Article and Find Full Text PDF

Microglial activation with the production of pro-inflammatory mediators such as IL-6, TNF-α, and IL-1β, is a major driver of neuropathic pain (NP) following peripheral nerve injury. We have previously shown that the RNA binding protein, HuR, is a positive node of regulation for many of these inflammatory mediators in glia and that its chemical inhibition or genetic deletion attenuates their production. In this report, we show that systemic administration of SRI-42127, a novel small molecule HuR inhibitor, attenuates mechanical allodynia, a hallmark of NP, in the early and chronic phases after spared nerve injury in male and female mice.

View Article and Find Full Text PDF

Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia.

View Article and Find Full Text PDF