Epoxy composites with excellent thermal properties are highly promising for thermal management applications in modern electronic devices. In this work, we report the enhancement of the thermal conductivity of two different nanocomposites, using epoxy resins LY564 (epoxy 1) and LY5052 (epoxy 2), by incorporating multiwalled boron nitride nanotubes (BNNT) and boron nitride nanosheets (BNNS) as fillers. The synergistic interaction between the 1D BNNT and 2D BNNS allows for improved thermal conductivity several different mechanisms.
View Article and Find Full Text PDFWe report the effect of the Ti3C2Tx MXene flake thickness on its inherent electrochemistry and heterogeneous charge transfer characteristics. It is shown that Ti3C2Tx undergoes irreversible oxidation in a positive potential window, which strongly depends on the flake thickness and pH of the electrolyte. Few-layered Ti3C2Tx exhibits faster electron transfer kinetics (k0 = 0.
View Article and Find Full Text PDFThermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc.
View Article and Find Full Text PDF