Publications by authors named "Rajesh Sani"

Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermotolerant (growth from 34-44 °C) strain Pseudomonas alcaligenes Med1 from Medano hot spring (39.1 °C surface temperature, pH 7.

View Article and Find Full Text PDF

Bacterial adhesion and biofilm maturation is significantly influenced by surface properties, encompassing both bare surfaces and single or multi-layered coatings. Hence, there is an utmost interest in exploring the intricacies of gene regulation in sulfate-reducing bacteria (SRB) on copper and graphene-coated copper surfaces. In this study, G20 was used as the model SRB to elucidate the pathways that govern pivotal roles during biofilm formation on the graphene layers.

View Article and Find Full Text PDF
Article Synopsis
  • Copper ions have toxic effects on bacteria, and this study specifically looked at how different concentrations of copper affect the G20 strain's ability to form biofilms while growing in a lactate-C medium.
  • High copper concentrations (5, 15, and 30 µM) reduced the growth of G20 in liquid (planktonic state) but increased biofilm formation on surfaces like glass.
  • Microscopic analysis showed that copper-stressed biofilms had changes in cell structure and higher levels of carbohydrates and proteins, along with significant changes in gene expression related to stress response and biofilm formation.
View Article and Find Full Text PDF

In an environment, microbes often work in communities to achieve most of their essential functions, including the production of essential nutrients. Microbial biofilms are communities of microbes that attach to a nonliving or living surface by embedding themselves into a self-secreted matrix of extracellular polymeric substances. These communities work together to enhance their colonization of surfaces, produce essential nutrients, and achieve their essential functions for growth and survival.

View Article and Find Full Text PDF

Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms.

View Article and Find Full Text PDF

Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation.

View Article and Find Full Text PDF

Background: Hot spring biofilms provide a window into the survival strategies of microbial communities in extreme environments and offer potential for biotechnological applications. This study focused on green and brown biofilms thriving on submerged plant litter within the Sungai Klah hot spring in Malaysia, characterised by temperatures of 58-74 °C. Using Illumina shotgun metagenomics and Nanopore ligation sequencing, we investigated the microbial diversity and functional potential of metagenome-assembled genomes (MAGs) with specific focus on biofilm formation, heat stress response, and carbohydrate catabolism.

View Article and Find Full Text PDF

Unlabelled: A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins.

View Article and Find Full Text PDF

In the present study, a thermophilic strain designated CamBx3 was isolated from the Campanario hot spring, Chile. Based on 16S rRNA gene sequence, phylogenomic, and average nucleotide identity analysis the strain CamBx3 was identified as . Genome analysis of CamBx3 revealed the presence of genes related to heat tolerance, exopolysaccharides (EPS), dissimilatory nitrate reduction, and assimilatory sulfate reduction.

View Article and Find Full Text PDF

The phase changes of soil water or porous media have a crucial influence on the performance of natural and man-made infrastructures in cold regions. While various methods have been explored to address the impacts of frost-action arising from these phase changes, conventional approaches often rely on chemicals, mechanical techniques, and the reuse of waste materials, which often exhibit certain limitations and environmental concerns. In contrast, certain organisms produce ice-binding proteins (IBPs) or antifreeze proteins (AFPs) to adapt to low temperatures, which can inhibit ice crystal growth by lowering the freezing point and preventing ice crystallization without the need for external intervention.

View Article and Find Full Text PDF

The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1.

View Article and Find Full Text PDF

Life on Earth has displayed remarkable adaptability to the harshest environments, spanning polar regions, scorching deserts, abyssal oceans, lightless caves, noxious lakes, boiling hot springs, and nuclear waste sites. These resilient organisms, known as extremophiles or polyextremophiles, owe their survival due to their unique genetic adaptations. This collection, titled ‘Genomics of Extreme Environments’, comprises several articles published in the esteemed journal Scientific Reports.

View Article and Find Full Text PDF

Initially, research disciplines operated independently, but the emergence of trans-disciplinary sciences led to convergence research, impacting graduate programs and research laboratories, especially in bioengineering and material engineering as presented here. Current graduate curriculum fails to efficiently prepare students for multidisciplinary and convergence research, thus creating a gap between the students and research laboratory expectations. We present a convergence training framework for graduate students, incorporating problem-based learning under the guidance of senior scientists and collaboration with postdoctoral researchers.

View Article and Find Full Text PDF

Bacteria are capable of producing a specific type of biopolymer, termed exopolysaccharides (EPSs). EPSs from thermophile sp. strain WSUCF1 specifically can be assembled using cost-effective lignocellulosic biomass as the primary carbon substrate in lieu of traditional sugars.

View Article and Find Full Text PDF

The growth and survival of an organism in a particular environment is highly depends on the certain indispensable genes, termed as essential genes. Sulfate-reducing bacteria (SRB) are obligate anaerobes which thrives on sulfate reduction for its energy requirements. The present study used G20 (OA G20) as a model SRB to categorize the essential genes based on their key metabolic pathways.

View Article and Find Full Text PDF

Natural polysaccharides being investigated for use in the field of drug delivery commonly require the addition of sugars or pretreated biomass for fabrication. sp. strain WSUCF1 is a thermophile capable of secreting natural polymers, termed exopolysaccharides (EPSs), cultivated from cost-effective, non-treated lignocellulosic biomass carbon substrates.

View Article and Find Full Text PDF

A significant amount of literature is available on biocorrosion, which makes manual extraction of crucial information such as genes and proteins a laborious task. Despite the fast growth of biology related corrosion studies, there is a limited number of gene collections relating to the corrosion process (biocorrosion). Text mining offers a potential solution by automatically extracting the essential information from unstructured text.

View Article and Find Full Text PDF

Dehydrogenation of methanol (CHOH) into direct current (DC) in fuel cells can be a potential energy conversion technology. However, their development is currently hampered by the high cost of electrocatalysts based on platinum and palladium, slow kinetics, the formation of carbon monoxide intermediates, and the requirement for high temperatures. Here, we report the use of graphene layers (GL) for generating DC electricity from microbially driven methanol dehydrogenation on underlying copper (Cu) surfaces.

View Article and Find Full Text PDF

Micrograph comparison remains useful in bioscience. This technology provides researchers with a quick snapshot of experimental conditions. But sometimes a two- condition comparison relies on researchers' eyes to draw conclusions.

View Article and Find Full Text PDF

Photosynthetic microbial fuel cells (pMFC) represent a promising approach for treating methanol (CHOH) wastewater. However, their use is constrained by a lack of knowledge on the extracellular electron transfer capabilities of photosynthetic methylotrophs, especially when coupled with metal electrodes. This study assessed the CHOH oxidation capabilities of Rhodobacter sphaeroides 2.

View Article and Find Full Text PDF

A thermophilic bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions.

View Article and Find Full Text PDF

Particulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, β, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.

View Article and Find Full Text PDF