Publications by authors named "Rajesh Salve"

With a prevalence of 12.5% of all new cancer cases annually, breast cancer stands as the most common form of cancer worldwide. The current therapies utilized for breast cancer are constrained and ineffective in addressing the condition.

View Article and Find Full Text PDF

Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits.

View Article and Find Full Text PDF

The therapeutics available for cancer treatment have the major hurdle of site-specific delivery of anti-cancer drugs to the tumor site and non-target specific side effects. The standard therapy for ovarian cancer still poses numerous pitfalls due to the irrational use of drugs affecting healthy cells. As an appealing approach, nanomedicine could revamp the therapeutic profile of anti-cancer agents.

View Article and Find Full Text PDF

The setback in the practical clinical use of RNA interference (RNAi)-based cancer treatment stems from the lack of targeted small interfering RNA (siRNA) delivery. Here, we show that luteinizing hormone-releasing hormone(LHRH) analog-tethered multi-layered polyamidoamine (PAMAM) nanoconstructs silence the anti-apoptotic MCL-1 gene in LHRH receptor overexpressing human breast (MCF-7) and prostate cancer (LNCaP) cells with 70.91 % and 74.

View Article and Find Full Text PDF

Ovarian cancer is the leading cause of cancer deaths in female patients. The current therapeutics in ovarian cancer are limited and inefficient in curing the disease. To tackle this, we have synthesized tetrasulfide derivative of silica doped, biodegradable, glutathione-responsive targeted mesoporous silica nanoparticles modified with heterobifunctional polyethylene glycol as a linker and mucin-1 aptamer for triggered paclitaxel delivery to the ovarian cancer cells.

View Article and Find Full Text PDF

The emergence of drug resistance in cancer cells is among the major challenges for treating cancer. In the last few years, the co-delivery of drug and siRNA has shown promising results against drug-resistant cancers. In the present study, we developed mesoporous silica-based multifunctional nanocarrier for co-delivery against drug-resistant triple-negative breast cancer (TNBC) cells.

View Article and Find Full Text PDF

The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage.

View Article and Find Full Text PDF

The pre-mature release of therapeutic cargos in the bloodstream or off-target sites is a major hurdle in drug delivery. However, stimuli-specific drug release responses are capable of providing greater control over the cargo release. Herein, various types of nanocarriers have been employed for such applications.

View Article and Find Full Text PDF

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX.

View Article and Find Full Text PDF

Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds.

View Article and Find Full Text PDF