Recent research has focused on nanoparticles. Aedes albopictus is a potential vector that transmits fatal diseases. Recently, Phyto-reduced silver nanoparticles (AgNPs) were shown to be mosquito larvicides.
View Article and Find Full Text PDFBackground: Biodiversity conservation is becoming challenging day by day. For this, it is essential to understand the distribution, habitat, and impact of anthropogenic activities on animals at risk. We assessed the suitable habitats and anthropogenic impacts on Asiatic black bears, common leopards, musk deer, and snow leopards in and outside the protected areas of Gandaki Province, Nepal.
View Article and Find Full Text PDFLarvae of the elephant mosquitoes, Toxorhynchites spp. (Diptera: Culicidae) are predacious on larvae of other mosquito species and some small aquatic organisms; this predatory behavior can be applied in (mosquito) vector control. The present study examined the feeding behavior of Toxorhynchites splendens on Aedes albopictus in relation to search area [volume of water (X1)] and prey density (X2), prey instars, predatory preference and larvae's functional response on variable prey densities.
View Article and Find Full Text PDFWe solve a model that describes a stimulated conversion between ultracold bosonic atoms and molecules. The reaction is triggered by a linearly time-dependent transition throughout the Feshbach resonance. Our solution predicts a dependence, with a dynamic phase transition, of the reaction efficiency on the transition rate for both atoms-to-molecule pairing and molecular dissociation processes.
View Article and Find Full Text PDFThe graphene family materials are two-dimensional staggered monolayers with a gapped energy band structure due to intrinsic spin-orbit coupling. The mass gaps in these materials can be manipulated on-demand via biasing with a static electric field, an off-resonance circularly polarized laser, or an exchange interaction field, allowing the monolayer to be driven through a multitude of topological phase transitions. We investigate the dynamics of spin-orbit coupled graphene family materials to unveil topological phase transition fingerprints embedded in the nonlinear regime and show how these signatures manifest in the nonlinear Kerr effect and in third-harmonic generation processes.
View Article and Find Full Text PDFThe Harper equation arising out of a tight-binding model of electrons on a honeycomb lattice subject to a uniform magnetic field perpendicular to the plane is studied. Contrasting and complementary approaches involving von Neumann entropy, fidelity, fidelity susceptibility, and multifractal analysis are employed to characterize the phase diagram. Remarkably even in the absence of the quasi-periodic on-site potential term, the Hamiltonian allows for a metal-insulator transition.
View Article and Find Full Text PDF